ArticleOriginal scientific text

Title

The set of automorphisms of B(H) is topologically reflexive in B(B(H))

Authors 1

Affiliations

  1. Institute of Mathematics, Lajos Kossuth University, P.O. Box 12, 4010 Debrecen, Hungary

Abstract

The aim of this paper is to prove the statement announced in the title which can be reformulated in the following way. Let H be a separable infinite-dimensional Hilbert space and let Φ: B(H) → B(H) be a continuous linear mapping with the property that for every A ∈ B(H) there exists a sequence (Φn) of automorphisms of B(H) (depending on A) such that Φ(A)=limnΦn(A). Then Φ is an automorphism. Moreover, a similar statement holds for the set of all surjective isometries of B(H).

Keywords

reflexivity, automorphism, Jordan homomorphism, automatic surjectivity

Bibliography

  1. [Bre] M. Brešar, Characterizations of derivations on some normed algebras with involution, J. Algebra 152 (1992), 454-462.
  2. [BS1] M. Brešar and P. Šemrl, Mappings which preserve idempotents, local automorphisms and local derivations, Canad. J. Math. 45 (1993), 483-496.
  3. [BS2] M. Brešar and P. Šemrl, On local automorphisms and mappings that preserve idempotents, Studia Math. 113 (1995), 101-108.
  4. [FMS] C. K. Fong, C. R. Miers and A. R. Sourour, Lie and Jordan ideals of operators on Hilbert space, Proc. Amer. Math. Soc. 84 (1982), 516-520.
  5. [Her] I. N. Herstein, Jordan homomorphisms, Trans. Amer. Math. Soc. 81 (1956), 331-341.
  6. [JR] N. Jacobson and C. Rickart, Jordan homomorphisms of rings, ibid. 69 (1950), 479-502.
  7. [Kad1] R. V. Kadison, Isometries of operator algebras, Ann. of Math. 54 (1951), 325-338.
  8. [Kad2] R. V. Kadison, Local derivations, J. Algebra 130 (1990), 494-509.
  9. [LS] D. R. Larson and A. R. Sourour, Local derivations and local automorphisms of B(X), in: Proc. Sympos. Pure Math. 51, Part 2, Providence, R.I., 1990, 187-194.
  10. [LoS] A. I. Loginov and V. S. Shul'man, Hereditary and intermediate reflexivity of W*-algebras, Izv. Akad. Nauk SSSR 39 (1975), 1260-1273 (in Russian); English transl.: Math. USSR-Izv. 9 (1975), 1189-1201.
  11. [Pal] T. W. Palmer, Banach Algebras and the General Theory of *-Algebras, Vol. I, Encyclopedia Math. Appl. 49, Cambridge University Press, 1994.
  12. [PS] H. Porta and J. T. Schwartz, Representations of the algebra of all operators in Hilbert space, and related analytic function algebras, Comm. Pure Appl. Math. 20 (1967), 457-492.
  13. [RD] B. Russo and H. A. Dye, A note on unitary operators in C*-algebras, Duke Math. J. 33 (1966), 413-416.
  14. [Shu] V. S. Shul'man, Operators preserving ideals in C*-algebras, Studia Math. 109 (1994), 67-72.
Pages:
183-193
Main language of publication
English
Received
1996-04-02
Accepted
1996-09-06
Published
1997
Exact and natural sciences