ArticleOriginal scientific text
Title
Four characterizations of scalar-type operators with spectrum in a half-line
Authors 1
Affiliations
- Fachbereich Mathematik, Universität Kaiserslautern Erwin-Schrödinger-Str., 67663 Kaiserslautern, Germany
Abstract
Bibliography
- P. L. Butzer and H. Behrens, Semi-Groups of Operators and Approximation, Springer, Berlin, 1967.
- R. deLaubenfels, Unbounded scalar operators on Banach lattices, Honam Math. J. 8 (1986), 1-19.
- R. deLaubenfels,
-scalar operators on cyclic spaces, Studia Math. 92 (1989), 49-58. - R. deLaubenfels, Automatic extension of functional calculi, ibid. 114 (1995), 238-259.
- R. deLaubenfels and I. Doust, Functional calculus, integral representations, and Banach space geometry, Quaestiones Math. 17 (1994), 161-171.
- R. deLaubenfels and S. Kantorovitz, Laplace and Laplace-Stieltjes space, J. Funct. Anal. 116 (1993), 1-61.
- R. deLaubenfels and S. Kantorovitz The semi-simplicity manifold for arbitrary Banach spaces, ibid. 113 (1995), 138-167.
- J. Diestel and J. J. Uhl, Vector Measures, Amer. Math. Soc., Providence, 1977.
- I. Doust, Well-bounded and scalar type spectral operators on spaces not containing
, Proc. Amer. Math. Soc. 105 (1989), 376-370. - H. R. Dowson, Spectral Theory of Linear Operators, Academic Press, London, 1978.
- N. Dunford and J. T. Schwartz, Linear Operators, Part III, Wiley-Interscience, New York, 1971.
- J. Goldstein, Semigroups of Linear Operators and Applications, Oxford University Press, Oxford, 1985.
- R. Hughes and S. Kantorovitz, Spectral analysis of certain operator functions, J. Operator Theory 22 (1989), 243-265.
- S. Kantorovitz, Characterization of unbounded spectral operators with spectrum in a half-line, Comment. Math. Helv. 56 (1981), 163-178.
- W. Ricker, Characterization of Stieltjes transforms of vector measures and an application to spectral theory, Hokkaido Math. J. 13 (1984), 299-309.
- H. H. Schäfer, A generalized moment problem, Math. Ann. 146 (1962), 326-330.
- P. Vieten, Holomorphie und Laplace Transformation banachraumwertiger Funktionen, Shaker, Aachen, 1995.
- D. V. Widder, The Laplace Transform, Princeton University Press, Princeton, 1941.