ArticleOriginal scientific text

Title

Initial value problem for the time dependent Schrödinger equation on the Heisenberg group

Authors 1

Affiliations

  1. Institute of Mathematics, University of Wrocław, Pl. Grunwaldzki 2/4, 50-384 Wrocław, Poland

Abstract

Let L be the full laplacian on the Heisenberg group n of arbitrary dimension n. Then for fL2(n) such that (I-L)s2fL2(n), s > 3/4, for a ϕCc(n) we have n|ϕ(x)|sup0<t1|e(-1)tLf(x)|2dxCϕfWs2. On the other hand, the above maximal estimate fails for s < 1/4. If Δ is the sublaplacian on the Heisenberg group n, then for every s < 1 there exists a sequence fnL2(n) and Cn>0 such that (I-L)s/2fnL2(n) and for a ϕCc(n) we have n|ϕ(x)|sup0<t1|e(-1)tΔfn(x)|2dxCnfnWs2,limnCn=+.

Bibliography

  1. [B] J. Bourgain, A remark on Schrödinger operators, Israel J. Math. 77 (1992), 1-16.
  2. [Car] A. Carbery, Radial Fourier multipliers and associated maximal functions, in: Recent Progress in Fourier Analysis, North-Holland Math. Stud. 111, North-Holland, 1985, 49-56.
  3. [C] L. Carleson, Some analytic problems related to statistical mechanics, in: Euclidean Harmonic Analysis, Lecture Notes in Math. 779, Springer, 1980, 5-45.
  4. [Cw] M. Cowling, Pointwise behaviour of solutions to Schrödinger equations, in: Harmonic Analysis, Lecture Notes in Math. 992, Springer, 1983, 83-90.
  5. [DK] B. E. J. Dahlberg and C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation, in: Harmonic Analysis, Lecture Notes in Math. 908, Springer, 1982, 205-209.
  6. [E1] A. Erdélyi, Asymptotic forms for Laguerre polynomials, J. Indian Math. Soc. 24 (1960), 235-250.
  7. [E2] A. Erdélyi, W. Magnus, F. Oberhettinger and G. F. Tricomi, Higher Transcendental Functions, Vol. 2, McGraw-Hill, New York, 1953.
  8. [HR] A. Hulanicki and F. Ricci, A Tauberian theorem and tangential convergence of bounded harmonic functions on balls in n, Invent. Math. 62 (1980), 325-331.
  9. [KPV1] C. E. Kenig, G. Ponce and L. Vega, Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J. 40 (1991), 33-69.
  10. [KPV2] C. E. Kenig, G. Ponce and L. Vega, Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Amer. Math. Soc. 4 (1991), 323-347.
  11. [KR] C. E. Kenig and A. Ruiz, A strong type (2,2) estimate for a maximal operator associated to the Schrödinger equation, Trans. Amer. Math. Soc. 280 (1983), 239-246.
  12. [M] D. Müller, A restriction theorem for the Heisenberg group, Ann. of Math. 131 (1990), 567-587.
  13. [MR] D. Müller and F. Ricci, Analysis of second order differential operators on Heisenberg groups I, Invent. Math. 101 (1990), 545-582.
  14. [NS] E. Nelson and W. F. Stinespring, Representations of elliptic operators in an enveloping algebra, Amer. J. Math. 81 (1959), 547-560.
  15. [P] E. Prestini, Radial functions and regularity of solutions to the Schrödinger equation, Monatsh. Math. 109 (1990), 135-143.
  16. [SS] P. Sjögren and P. Sjölin, Convergence properties for the time dependent Schrödinger equation, Ann. Acad. Sci. Fenn. Ser. AI Math. 14 (1989), 13-25.
  17. [S1] P. Sjölin, Regularity of solutions to the Schrödinger equations, Duke Math. J. 55 (1987), 699-715.
  18. [S2] P. Sjölin, Global maximal estimates for solutions to the Schrödinger equation, Studia Math. 110 (1994), 105-114.
  19. [S3] P. Sjölin, Radial functions and maximal estimates for solutions to the Schrödinger equation, J. Austral. Math. Soc. 59 (1995), 134-142.
  20. [Sz] G. Szegő, Orthogonal Polynomials, Colloq. Publ. 23, Amer. Math. Soc., 1939.
  21. [V] L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc. 102 (1988), 874-878.
Pages:
15-37
Main language of publication
English
Received
1995-09-20
Published
1997
Exact and natural sciences