ArticleOriginal scientific textComplex Unconditional Metric Approximation Property for
Title
Complex Unconditional Metric Approximation Property for spaces
Authors 1, 2
Affiliations
- Equipe d'Analyse, Université Paris VI, 4 Place Jussieu, 75252 Paris Cedex 05, France
- Analyse Harmonique, Université Paris-Sud, Mathématiques, Bâtiment 425, 91405 Orsay, France
Abstract
We study the Complex Unconditional Metric Approximation Property for translation invariant spaces of continuous functions on the circle group. We show that although some "tiny" (Sidon) sets do not have this property, there are "big" sets Λ for which has (ℂ-UMAP); though these sets are such that contains functions which are not continuous, we show that there is a linear invariant lifting from these spaces into the Baire class 1 functions.
Keywords
Unconditional Metric Approximation Property, translation invariant spaces of continuous functions, Rosenthal set, Riesz set, linear invariant lifting
Bibliography
- G. F. Bachelis and S. E. Ebenstein, On Λ(p) sets, Pacific J. Math. 54 (1974), 35-38.
- D. L. Cartwright, R. B. Howlett and J. R. McMullen, Extreme values for the Sidon constant, Proc. Amer. Math. Soc. 81 (1981), 531-537.
- P. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, in: Geometry of Banach Spaces, P. F. X. Müller and W. Schachermayer (eds)., London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 49-63.
- G. Godefroy, On Riesz subsets of abelian discrete groups, Israel J. Math. 61 (1988), 301-331.
- G. Godefroy and N. J. Kalton, Commuting approximation properties, preprint.
- G. Godefroy, N. J. Kalton and D. Li, On subspaces of
which embed into , J. Reine Angew. Math. 471 (1996), 43-75. - G. Godefroy, N. J. Kalton and P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59.
- G. Godefroy and D. Li, Some natural families of M-ideals, Math. Scand. 66 (1990), 249-263.
- G. Godefroy and F. Lust-Piquard, Some applications of geometry of Banach spaces to harmonic analysis, Colloq. Math. 60/61 (1990), 443-456.
- G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, 4th ed., Oxford Univ. Press, 1960.
- S. Hartman, Some problems and remarks on relative multipliers, Colloq. Math. 54 (1987), 103-111.
- N. Hindman, On density, translates, and pairwise sums of integers, J. Combin. Theory Ser. A 33 (1982), 147-157.
- M. I. Kadec and A. Pełczyński, Bases, lacunary sequences and complemented subspaces in the spaces
, Studia Math. 21 (1962), 161-176. - N. J. Kalton, Spaces of compact operators, Math. Ann. 208 (1974), 267-278.
- D. Li, On Hilbert sets and
-spaces with no subspace isomorphic to , Colloq. Math. 63 (1995), 67-77. - F. Lust-Piquard, Ensembles de Rosenthal et ensembles de Riesz, C. R. Acad. Sci. Paris Sér. A 282 (1976), 833-835.
- F. Lust-Piquard, Eléments ergodiques et totalement ergodiques dans
, Studia Math. 69 (1981), 191-225. - Y. Meyer, Endomorphismes des idéaux fermés de
, classes de Hardy et séries de Fourier lacunaires, Ann. Sci. Ecole Norm. Sup. (4) 1 (1968), 499-580. - Y. Meyer, Algebraic Numbers and Harmonic Analysis, North-Holland, 1972.
- A. Pełczyński, On commensurate sequences of characters, Proc. Amer. Math. Soc. 104 (1988), 525-531.
- A. Pełczyński and P. Wojtaszczyk, Banach spaces with finite dimensional expansions of identity and universal bases of finite dimensional subspaces, Studia Math. 40 (1971), 91-108.
- G. Pisier, Bases, suites lacunaires dans les espaces
d'après Kadec et Pełczyński, Sém. Maurey-Schwartz, exposé 18, Ecole Polytechnique, Paris, 1973. - G. Pisier, Les inégalités de Khintchine-Kahane d'après C. Borell, Sém. Géométrie des Espaces de Banach 1977-1978, exposé VII, Ecole Polytechnique, Paris.
- H. P. Rosenthal, On trigonometric series associated with weak* closed subspaces of continuous functions, J. Math. Mech. 17 (1967), 485-490.
- W. Rudin, Trigonometric series with gaps, ibid. 9 (1960), 203-227.
- W. Rudin,
-isometries and equimeasurability, Indiana Univ. Math. J. 25 (1976), 215-228.