ArticleOriginal scientific text
Title
Singular values, Ramanujan modular equations, and Landen transformations
Authors 1
Affiliations
- Department of Mathematics, University of Helsinki, P.O. Box 4 (Yliopistonk. 5), FIN-00014 Helsinki, Finland
Abstract
A new connection between geometric function theory and number theory is derived from Ramanujan's work on modular equations. This connection involves the function recurrent in the theory of plane quasiconformal maps. Ramanujan's modular identities yield numerous new functional identities for for various primes p.
Bibliography
- [AB] G. Almkvist and B. Berndt, Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π, and the Ladies Diary, Amer. Math. Monthly 95 (1988), 585-608.
- [AV] G. D. Anderson and M. K. Vamanamurthy, Some properties of quasiconformal distortion functions, New Zealand J. Math. 24 (1995), 1-15.
- [AVV1] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Functional inequalities for complete elliptic integrals and their ratios, SIAM J. Math. Anal. 21 (1990), 536-549.
- [AVV2] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Inequalities for plane quasiconformal mappings, in: The Mathematical Heritage of Wilhelm Magnus - Groups, Geometry and Special Functions, W. Abikoff, J. S. Birman and K. Kuiken (eds.), Contemp. Math. 169, Amer. Math. Soc., 1994, 1-27.
- [B] B. C. Berndt, Ramanujan Notebooks, Part III, Springer, Berlin, 1991.
- [BBG] B. C. Berndt, S. Bhargava, and F. G. Garvan, Ramanujan's theories of elliptic functions to alternative bases, Trans. Amer. Math. Soc. 347 (1995), 4163-4244.
- [BC] B. C. Berndt and H. H. Chan, Ramanujan's explicit values for the classical theta-functions, Mathematika 42 (1995), 278-294.
- [BB] J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, New York, 1987.
- [FK] H. M. Farkas and Y. Kopeliovich, New theta constant identities II, Proc. Amer. Math. Soc. 123 (1995), 1009-1020.
- [H] G. H. Hardy, Ramanujan, Chelsea, New York, 1940.
- [J] C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, 1829, Jacobi's Gesammelte Werke, Vol. 1, Berlin, 1881-1891.
- [KZ] W. Kawa and J. Zając, Dynamical approximation of the distortion function
, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 20 (1995), 39-48. - [L] D. F. Lawden, Elliptic Functions and Applications, Springer, New York, 1989.
- [LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed., Grundlehren Math. Wiss. 126, Springer, New York, 1973.
- [P1] D. Partyka, Approximation of the Hersch-Pfluger distortion function. Applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 99-111.
- [P2] D. Partyka, Approximation of the Hersch-Pfluger distortion function, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 343-354.
- [P3] D. Partyka, The maximal value of the function
, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 20 (1995), 49-55. - [QVV] S.-L. Qiu, M. K. Vamanamurthy and M. Vuorinen, Bounds for quasiconformal distortion functions, J. Math. Anal. Appl., to appear.
- [SC] A. Selberg and S. Chowla, On Epstein's zeta-function, J. Reine Angew. Math. 227 (1967), 87-110.
- [S1] L.-C. Shen, On some cubic modular identities, Proc. Amer. Math. Soc. 119 (1993), 203-208.
- [S2] L.-C. Shen, On some modular equations of degree 5, ibid. 123 (1995), 1521-1526.
- [VV] M. K. Vamanamurthy and M. Vuorinen, Functional inequalities, Jacobi products and quasiconformal maps, Illinois J. Math. 38 (1994), 394-419.