A new connection between geometric function theory and number theory is derived from Ramanujan's work on modular equations. This connection involves the function $φ_K(r)$ recurrent in the theory of plane quasiconformal maps. Ramanujan's modular identities yield numerous new functional identities for $φ_{1/p}(r)$ for various primes p.
Department of Mathematics, University of Helsinki, P.O. Box 4 (Yliopistonk. 5), FIN-00014 Helsinki, Finland
Bibliografia
[AB] G. Almkvist and B. Berndt, Gauss, Landen, Ramanujan, the arithmetic-geometric mean, ellipses, π, and the Ladies Diary, Amer. Math. Monthly 95 (1988), 585-608.
[AV] G. D. Anderson and M. K. Vamanamurthy, Some properties of quasiconformal distortion functions, New Zealand J. Math. 24 (1995), 1-15.
[AVV1] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Functional inequalities for complete elliptic integrals and their ratios, SIAM J. Math. Anal. 21 (1990), 536-549.
[AVV2] G. D. Anderson, M. K. Vamanamurthy, and M. Vuorinen, Inequalities for plane quasiconformal mappings, in: The Mathematical Heritage of Wilhelm Magnus - Groups, Geometry and Special Functions, W. Abikoff, J. S. Birman and K. Kuiken (eds.), Contemp. Math. 169, Amer. Math. Soc., 1994, 1-27.
[B] B. C. Berndt, Ramanujan Notebooks, Part III, Springer, Berlin, 1991.
[BBG] B. C. Berndt, S. Bhargava, and F. G. Garvan, Ramanujan's theories of elliptic functions to alternative bases, Trans. Amer. Math. Soc. 347 (1995), 4163-4244.
[BC] B. C. Berndt and H. H. Chan, Ramanujan's explicit values for the classical theta-functions, Mathematika 42 (1995), 278-294.
[BB] J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, New York, 1987.
[FK] H. M. Farkas and Y. Kopeliovich, New theta constant identities II, Proc. Amer. Math. Soc. 123 (1995), 1009-1020.
[H] G. H. Hardy, Ramanujan, Chelsea, New York, 1940.
[J] C. G. J. Jacobi, Fundamenta Nova Theoriae Functionum Ellipticarum, 1829, Jacobi's Gesammelte Werke, Vol. 1, Berlin, 1881-1891.
[KZ] W. Kawa and J. Zając, Dynamical approximation of the distortion function $Φ_K$, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 20 (1995), 39-48.
[L] D. F. Lawden, Elliptic Functions and Applications, Springer, New York, 1989.
[LV] O. Lehto and K. I. Virtanen, Quasiconformal Mappings in the Plane, 2nd ed., Grundlehren Math. Wiss. 126, Springer, New York, 1973.
[P1] D. Partyka, Approximation of the Hersch-Pfluger distortion function. Applications, Ann. Univ. Mariae Curie-Skłodowska Sect. A 45 (1991), 99-111.
[P2] D. Partyka, Approximation of the Hersch-Pfluger distortion function, Ann. Acad. Sci. Fenn. Ser. A I Math. 18 (1993), 343-354.
[P3] D. Partyka, The maximal value of the function $[0,1] ∋ r → Φ_K^2(√r)-r$, Bull. Soc. Sci. Lett. Łódź Sér. Rech. Déform. 20 (1995), 49-55.
[QVV] S.-L. Qiu, M. K. Vamanamurthy and M. Vuorinen, Bounds for quasiconformal distortion functions, J. Math. Anal. Appl., to appear.
[SC] A. Selberg and S. Chowla, On Epstein's zeta-function, J. Reine Angew. Math. 227 (1967), 87-110.
[S1] L.-C. Shen, On some cubic modular identities, Proc. Amer. Math. Soc. 119 (1993), 203-208.
[S2] L.-C. Shen, On some modular equations of degree 5, ibid. 123 (1995), 1521-1526.
[VV] M. K. Vamanamurthy and M. Vuorinen, Functional inequalities, Jacobi products and quasiconformal maps, Illinois J. Math. 38 (1994), 394-419.