ArticleOriginal scientific text
Title
Sums of idempotents and a lemma of N. J. Kalton
Authors 1
Affiliations
- Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, U.K.
Abstract
A lemma of Gelfand-Hille type is proved. It is used to give an improved version of a result of Kalton on sums of idempotents.
Bibliography
- G. R. Allan, Power-bounded elements in a Banach algebra and a theorem of Gelfand, in: Conf. on Automatic Continuity and Banach Algebras (Canberra, January 1989), R. J. Loy (ed.), Proc. Centre Math. Anal. Austral. Nat. Univ. 21, Canberra, 1989, 1-12.
- G. R. Allan and T. J. Ransford, Power-dominated elements in a Banach algebra, Studia Math. 94 (1989), 63-79.
- R. P. Boas, Entire Functions, Academic Press, New York, 1954.
- H. F. Bohnenblust and S. Karlin, Geometrical properties of the unit sphere of Banach algebras, Ann. of Math. 62 (1955), 217-229.
- F. F. Bonsall and J. Duncan, Numerical Ranges of Operators on Normed Spaces and of Elements of Normed Algebras, London Math. Soc. Lecture Note Ser. 2, Cambridge Univ. Press, 1971.
- J. Esterle, Quasi-multipliers, representations of
, and the closed ideal problem for commutative Banach algebras, in: Radical Banach Algebras and Automatic Continuity, Lecture Notes in Math. 975, Springer, 1983, 66-162. - I. Gelfand, Zur Theorie der Charaktere der abelschen topologischen Gruppen, Rec. Math. N.S. (Mat. Sb.) 9 (51) (1941), 49-50.
- E. Hille, On the theory of characters of groups and semigroups in normed vector rings, Proc. Nat. Acad. Sci. U.S.A. 30 (1944), 58-60.
- N. J. Kalton, Sums of idempotents in Banach algebras, Canad. Math. Bull. 31 (1988), 448-451.
- Y. Katznelson and L. Tzafriri, On power-bounded operators, J. Funct. Anal. 68 (1986), 313-328.
- G. Lumer and R. S. Phillips, Dissipative operators in a Banach space, Pacific J. Math. 11 (1961), 679-698.
- G. E. Shilov, On a theorem of I. M. Gel'fand and its generalizations, Dokl. Akad. Nauk SSSR 72 (1950), 641-644 (in Russian).
- J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Inst. Math., Polish Acad. Sci. Warszawa, 1994, 369-385.