ArticleOriginal scientific text

Title

A Fourier analytical characterization of the Hausdorff dimension of a closed set and of related Lebesgue spaces

Authors 1, 2

Affiliations

  1. Mathematisches Institut, Friedrich-Schiller-Universität, Jena D-07740, Jena, Germany
  2. Mathematisches Institut, Friedrich-Schiller-Universität Jena, D-07740 Jena, Germany

Abstract

Let Γ be a closed set in n with Lebesgue measure |Γ| = 0. The first aim of the paper is to give a Fourier analytical characterization of Hausdorff dimension of Γ. Let 0 < d < n. If there exist a Borel measure µ with supp µ ⊂ Γ and constants c1>0 and c2>0 such that c1rdµ(B(x,r))c2rd for all 0 < r < 1 and all x ∈ Γ, where B(x,r) is a ball with centre x and radius r, then Γ is called a d-set. The second aim of the paper is to provide a link between the related Lebesgue spaces Lp(Γ), 0 < p ≤ ∞, with respect to that measure µ on the hand and the Fourier analytically defined Besov spaces Bs_{p,q}(n) (s ∈ ℝ, 0 < p ≤ ∞, 0 < q ≤ ∞) on the other hand.

Keywords

Hausdorff dimension, Hausdorff measure, function spaces

Bibliography

  1. K. J. Falconer, The Geometry of Fractal Sets, Cambridge Univ. Press, 1985.
  2. K. J. Falconer, Fractal Geometry, Wiley, 1990.
  3. M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799.
  4. M. Frazier and B. Jawerth, A discrete transform and decomposition of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
  5. A. B. Gulisashvili, Traces of differentiable functions on subsets of the euclidean space, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 149 (1986), 52-66 (in Russian).
  6. A. Jonsson, Atomic decomposition of Besov spaces on closed sets, in: Function Spaces, Differential Operators and Non-Linear Analysis, Teubner-Texte Math. 133, Teubner, Leipzig, 1993, 285-289.
  7. A. Jonsson, Besov spaces on closed sets by means of atomic decompositions, preprint, Umeå, 1993.
  8. A. Jonsson and H. Wallin, Function Spaces on Subsets of n, Math. Reports 2, Part 1, Harwood Acad. Publ., London, 1984.
  9. A. Jonsson and H. Wallin, The dual of Besov spaces on fractals, Studia Math. 112 (1995), 285-300.
  10. H. Triebel, Theory of Function Spaces, Birkhäuser, Basel, 1983.
  11. H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992.
  12. H. Triebel and H. Winkelvoß, Intrinsic atomic characterizations of function spaces on domains, Math. Z. 221 (1996), 647-673.
  13. H. Triebel and H. Winkelvoß, The dimension of a closed subset of n and related function spaces, Acta Math. Hungar. 68 (1995), 117-133.
  14. H. Winkelvoß, Function spaces related to fractals. Intrinsic atomic characterizations of function spaces on domains, Thesis, Jena, 1995.
Pages:
149-166
Main language of publication
English
Received
1995-09-26
Accepted
1996-06-10
Published
1996
Exact and natural sciences