ArticleOriginal scientific text

Title

Trace and determinant in Banach algebras

Authors 1, 2

Affiliations

  1. Département de Mathématiques et de Statistique, Université Laval, Québec, Qué., Canada, G1K 7P4
  2. Department of Electronic and Electrical Engineering, University of Stellenbosch, Stellenbosch, 7600 South Africa

Abstract

We show that the trace and the determinant on a semisimple Banach algebra can be defined in a purely spectral and analytic way and then we obtain many consequences from these new definitions.

Bibliography

  1. J. C. Alexander, Compact Banach algebras, Proc. London Math. Soc. (3) 18 (1968), 1-18.
  2. B. Aupetit, Propriétés spectrales des algèbres de Banach, Lecture Notes in Math. 735, Springer, Berlin, 1979.
  3. B. Aupetit, A Primer on Spectral Theory, Universitext, Springer, New York, 1991.
  4. B. Aupetit, Spectral characterization of the socle in Jordan-Banach algebras, Math. Proc. Cambridge Philos. Soc. 117 (1995), 479-489.
  5. B. Aupetit, A geometric characterization of algebraic varieties of 2, Proc. Amer. Math. Soc. 123 (1995), 3323-3327.
  6. B. Aupetit, Trace and spectrum preserving linear mappings in Jordan-Banach algebras, Monatsh. Math., to appear.
  7. B. Aupetit and H. du T. Mouton, Spectrum preserving linear mappings in Banach algebras, Studia Math. 109 (1994), 91-100.
  8. B. Aupetit, A. Maouche and H. du T. Mouton, Trace and determinant in Jordan-Banach algebras, preprint.
  9. B. A. Barnes, G. J. Murphy, M. R. F. Smyth and T. T. West, Riesz and Fredholm Theory in Banach Algebras, Res. Notes in Math. 67, Pitman, Boston, 1982.
  10. F. F. Bonsall and J. Duncan, Complete Normed Algebras, Ergeb. Math. Grenzgeb. 80, Springer, Berlin, 1973.
  11. J. Dieudonné, History of Functional Analysis, Notas Mat. 49, North-Holland, Amsterdam, 1981.
  12. R. A. Hirschfeld and B. E. Johnson, Spectral characterization of finite-dimensional algebras, Indag. Math. 34 (1972), 19-23.
  13. H. Kraljević and K. Veselić, On algebraic and spectrally finite Banach algebras, Glasnik Mat. 11 (1976), 291-318.
  14. (H. du) T. Mouton and R. Raubenheimer, On rank one and finite elements of Banach algebras, Studia Math. 104 (1993), 211-219.
  15. A. Pietsch, Eigenvalues and s-Numbers, Cambridge Stud. Adv. Math. 13, Cambridge University Press, Cambridge, 1987.
  16. J. Puhl, The trace of finite and nuclear elements in Banach algebras, Czechoslovak Math. J. 28 (103) (1978), 656-676.
  17. W. Rudin, Real and Complex Analysis, 2nd ed., McGraw-Hill, New York, 1974.
  18. Y. Sun, A remark on the trace of some Riesz operators, Arch. Math. (Basel) 63 (1994), 530-534.
  19. M. Trémon, Polynômes de degré minimum connectant deux projections dans une algèbre de Banach, Linear Algebra Appl. 64 (1985), 115-132.
  20. H. K. Wimmer, Spectral radius and radius of convergence, Amer. Math. Monthly 81 (1974), 625-627.
  21. J. Zemánek, Idempotents in Banach algebras, Bull. London Math. Soc. 11 (1979), 177-183.
Pages:
115-136
Main language of publication
English
Received
1995-03-03
Accepted
1996-06-28
Published
1996
Exact and natural sciences