ArticleOriginal scientific text

Title

An uncertainty principle related to the Poisson summation formula

Authors 1

Affiliations

  1. Department of Mathematics U-9, The University of Connecticut, Storrs, Connecticut 06269-3009, U.S.A.

Abstract

We prove a class of uncertainty principles of the form Sgf1C(xafp+ωbf̂q), where Sgf is the short time Fourier transform of f. We obtain a characterization of the range of parameters a,b,p,q for which such an uncertainty principle holds. Counter-examples are constructed using Gabor expansions and unimodular polynomials. These uncertainty principles relate the decay of f and f̂ to their behaviour in phase space. Two applications are given: (a) If such an inequality holds, then the Poisson summation formula is valid with absolute convergence of both sums. (b) The validity of an uncertainty principle implies sufficient conditions on a symbol σ such that the corresponding pseudodifferential operator is of trace class.

Keywords

uncertainty principle, Poisson summation formula, unimodular polynomial, modulation space, time-frequency analysis, phase space

Bibliography

  1. J. J. Benedetto, Frame decompositions, sampling, and uncertainty principle inequalities, in: Wavelets: Mathematics and Applications, J. Benedetto and M. Frazier (eds.), CRC Press, Boca Raton, 1994, 247-304.
  2. M. G. Cowling and J. F. Price, Bandwidth versus time concentration: the Heisenberg-Pauli-Weyl inequality, SIAM J. Math. Anal. 15 (1984), 151-165.
  3. I. Daubechies, On the distributions corresponding to bounded operators in the Weyl quantization, Comm. Math. Phys. 75 (1980), 229-238.
  4. D. L. Donoho and P. B. Stark, Uncertainty principles and signal recovery, SIAM J. Appl. Math. 49 (1989), 906-931.
  5. C. Fefferman, The uncertainty principle, Bull. Amer. Math. Soc. 9 (1983), 129-206.
  6. H. G. Feichtinger, On a new Segal algebra, Monatsh. Math. 92 (1981), 269-289.
  7. H. G. Feichtinger, Un espace de Banach de distributions tempérées sur les groupes localement compacts abéliens, C. R. Acad. Sci. Paris Sér. A 290 (1980), 791-794.
  8. H. G. Feichtinger, Atomic characterizations of modulation spaces through Gabor-type representations, Proc. Conf. "Constructive Function Theory", Edmonton, July 1986, Rocky Mountain J. Math. 19 (1989), 113-126.
  9. H. G. Feichtinger, personal communication.
  10. H. Feichtinger and K. Gröchenig, Gabor wavelets and the Heisenberg group: Gabor expansions and short time Fourier transform from the group theoretical point of view, in: Wavelets: A Tutorial in Theory and Applications, Ch. K. Chui (ed.), Academic Press, Boston, 1992, 359-397.
  11. G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton Univ. Press, 1989.
  12. K. Gröchenig, Describing functions: atomic decompositions versus frames, Monatsh. Math. 112 (1991), 1-42.
  13. C. Heil, J. Ramanathan and P. Topiwala, Singular values of compact pseudodifferential operators, preprint, 1995.
  14. C. Heil and D. Walnut, Continuous and discrete wavelet transforms, SIAM Rev. 31 (1989), 628-666.
  15. J.-P. Kahane, Sur les polynômes à coefficients unimodulaires, Bull. London Math. Soc. 12 (1980), 321-342.
  16. J.-P. Kahane et P. G. Lemarié-Rieusset, Remarques sur la formule sommatoire de Poisson, Studia Math. 109 (1994), 303-316.
  17. Y. Katznelson, Une remarque concernant la formule de Poisson, ibid. 29 (1967), 107-108.
  18. E. Lieb, Integral bounds for radar ambiguity functions and Wigner distributions, J. Math. Phys. 31 (3) (1990), 594-599.
  19. V. Losert, A characterization of the minimal strongly character invariant Segal algebra, Ann. Inst. Fourier (Grenoble) 30 (1980), 129-139.
  20. J. F. Price, Inequalities and local uncertainty principles, J. Math. Phys. 24 (1983), 1711-1714.
  21. E. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, 1993.
Pages:
87-104
Main language of publication
English
Received
1996-03-20
Accepted
1996-05-31
Published
1996
Exact and natural sciences