ArticleOriginal scientific text

Title

Köthe spaces modeled on spaces of C functions

Authors 1, 2, 3

Affiliations

  1. Department of Mathematics, Bilkent University, 06533 Bilkent, Ankara, Turkey
  2. Rostov State University, Rostov-na-Donu, Russia
  3. TÜBİTAK Marmara Research Center, 41470 Gebze, Kocaeli, Turkey

Abstract

The isomorphic classification problem for the Köthe models of some C function spaces is considered. By making use of some interpolative neighborhoods which are related to the linear topological invariant Dφ and other invariants related to the "quantity" characteristics of the space, a necessary condition for the isomorphism of two such spaces is proved. As applications, it is shown that some pairs of spaces which have the same interpolation property Dφ are not isomorphic.

Bibliography

  1. H. Apiola, Characterization of subspaces and quotients of nuclear Lf(α,)-spaces, Compositio Math. 50 (1983), 65-81.
  2. C. Bessaga, A. Pełczyński and S. Rolewicz, On diametral approximative dimension and linear homogeneity of F-spaces, Bull. Acad. Polon. Sci. 9 (1961), 677-683.
  3. P. B. Djakov and V. P. Zahariuta, On Dragilev type power spaces, preprint.
  4. I. M. Gelfand, On some problems of functional analysis, Uspekhi Mat. Nauk 11 (6) (1956), 3-12 (in Russian).
  5. A. P. Goncharov, Isomorphic classifications of spaces of infinitely differentiable functions, dissertation, Rostov University, 1986 (in Russian).
  6. A. P. Goncharov and V. P. Zahariuta, Linear topological invariants and spaces of infinitely differentiable functions, Mat. Anal. i ego Prilozhen., Rostov State University, 1985, 18-27 (in Russian).
  7. A. P. Goncharov and V. P. Zahariuta, On the existence of bases in spaces of Whitney functions on special compact sets in ℝ, preprint.
  8. A. N. Kolmogorov, On the linear dimension of topological vector spaces, Dokl. Akad. Nauk SSSR 120 (1958), 239-341 (in Russian).
  9. V. P. Kondakov and V. P. Zahariuta, On bases in spaces of infinitely differentiable functions on special domains with cusp, Note Mat. 12 (1992), 99-106.
  10. B. S. Mityagin, Approximate dimension and bases in nuclear spaces, Russian Math. Surveys 16 (4) (1961), 59-127.
  11. B. S. Mityagin, Sur l'équivalence des bases inconditionnelles dans les échelles de Hilbert, C. R. Acad. Sci. Paris 269 (1969), 426-428.
  12. B. S. Mityagin, The equivalence of bases in Hilbert scales, Studia Math. 37 (1971), 111-137 (in Russian).
  13. B. S. Mityagin, Non-Schwartzian power series spaces, Math. Z. 182 (1983), 303-310.
  14. A. Pełczyński, On the approximation of S-spaces by finite-dimensional spaces, Bull. Acad. Polon. Sci. 5 (1957), 879-881.
  15. M. Tidten, An example of a continuum of pairwise non-isomorphic spaces of C functions, Studia Math. 78 (1984), 267-274.
  16. D. Vogt, Some results on continuous linear maps between Fréchet spaces, in: Functional Analysis: Surveys and Recent Results III, K. D. Bierstedt and B. Fuchssteiner (eds.), North-Holland Math. Stud. 90, North-Holland, 1984, 349-381.
  17. V. P. Zahariuta, Linear topological invariants and isomorphisms of spaces of analytic functions, Mat. Anal. i ego Prilozhen., Rostov Univ. 2 (1970), 3-13, 3 (1971), 176-180 (in Russian).
  18. V. P. Zahariuta, Generalized Mityagin invariants and a continuum of pairwise nonisomorphic spaces of analytic functions, Funktsional. Anal. i Prilozhen. 11 (3) (1977), 24-30 (in Russian).
  19. V. P. Zahariuta, Synthetic diameters and linear topological invariants, in: School on Theory of Operators in Functional Spaces (abstracts of reports), Minsk, 1978, 51-52 (in Russian).
  20. V. P. Zahariuta, On isomorphic classification of F-spaces, in: Linear and Complex Analysis Problem Book, 199 Research Problems, Lecture Notes in Math. 1043, Springer, 1984, 34-37.
  21. V. P. Zahariuta, Linear topological invariants and their applications to isomorphic classification of generalized power spaces, Turkish J. Math. 20 (1996), 237-289.
Pages:
1-14
Main language of publication
English
Received
1995-04-26
Accepted
1996-05-14
Published
1996
Exact and natural sciences