ArticleOriginal scientific text

Title

(Hp,Lp)-type inequalities for the two-dimensional dyadic derivative

Authors 1

Affiliations

  1. Department of Numerical Analysis, Eötvös L. University, Múzeum krt. 6-8, H-1088 Budapest, Hungary

Abstract

It is shown that the restricted maximal operator of the two-dimensional dyadic derivative of the dyadic integral is bounded from the two-dimensional dyadic Hardy-Lorentz space Hp,q to Lp,q (2/3 < p < ∞, 0 < q ≤ ∞) and is of weak type (L1,L1). As a consequence we show that the dyadic integral of a ∞ function fL1 is dyadically differentiable and its derivative is f a.e.

Keywords

Hardy spaces, p-atom, interpolation, Walsh functions, dyadic derivative

Bibliography

  1. C. Bennett and R. Sharpley, Interpolation of Operators, Pure Appl. Math. 129, Academic Press, New York, 1988.
  2. J. Bergh and J. Löfström, Interpolation Spaces. An Introduction, Springer, Berlin, 1976.
  3. P. L. Butzer and W. Engels, Dyadic calculus and sampling theorems for functions with multidimensional domain, Inform. and Control 52 (1982), 333-351.
  4. P. L. Butzer and H. J. Wagner, On dyadic analysis based on the pointwise dyadic derivative, Anal. Math. 1 (1975), 171-196.
  5. P. L. Butzer and H. J. Wagner, Walsh series and the concept of a derivative, Appl. Anal. 3 (1973), 29-46.
  6. A. M. Garsia, Martingale Inequalities. Seminar Notes on Recent Progress, Math. Lecture Notes Ser., Benjamin, New York, 1973.
  7. Gy. Gát, On the two-dimensional pointwise dyadic calculus, J. Approx. Theory, to appear.
  8. J. Neveu, Discrete-Parameter Martingales, North-Holland, 1971.
  9. F. Schipp, Über einen Ableitungsbegriff von P. L. Butzer und H. J. Wagner, Math. Balkanica 4 (1974), 541-546.
  10. F. Schipp, Über gewissen Maximaloperatoren, Ann. Univ. Sci. Budapest. Sect. Math. 18 (1975), 189-195.
  11. F. Schipp and P. Simon, On some (H,L1)-type maximal inequalities with respect to the Walsh-Paley system, in: Functions, Series, Operators, Budapest 1980, Colloq. Math. Soc. János Bolyai 35, North-Holland, Amsterdam, 1981, 1039-1045.
  12. F. Schipp and W. R. Wade, A fundamental theorem of dyadic calculus for the unit square, Appl. Anal. 34 (1989), 203-218.
  13. F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990.
  14. F. Weisz, Cesàro summability of two-dimensional Walsh-Fourier series, Trans. Amer. Math. Soc. (1996), to appear.
  15. F. Weisz, Martingale Hardy spaces and the dyadic derivative, Anal. Math., to appear.
  16. F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
  17. F. Weisz, Some maximal inequalities with respect to two-dimensional dyadic derivative and Cesàro summability, Appl. Anal., to appear.
  18. A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959.
Pages:
271-288
Main language of publication
English
Received
1996-01-18
Accepted
1996-04-16
Published
1996
Exact and natural sciences