ArticleOriginal scientific text
Title
A non-regular Toeplitz flow with preset pure point spectrum
Authors 1, 2
Affiliations
- Institute of Mathematics, Technical University of Wrocław, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
- U.B.O. Faculté des Sciences et Techniques, Département de Mathématiques, 6 Av. V. Le Gorgeu, B.P. 809, 29287 Brest Cedex, France
Abstract
Given an arbitrary countable subgroup of the torus, containing infinitely many rationals, we construct a strictly ergodic 0-1 Toeplitz flow with pure point spectrum equal to . For a large class of Toeplitz flows certain eigenvalues are induced by eigenvalues of the flow Y which can be seen along the aperiodic parts.
Keywords
Toeplitz sequence, pure point spectrum, strict ergodicity, group extension
Bibliography
- [B-K1] W. Bułatek and J. Kwiatkowski, The topological centralizers of Toeplitz flows and their
-extensions, Publ. Math. 34 (1990), 45-65. - [B-K2] W. Bułatek and J. Kwiatkowski, Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers, Studia Math. 103 (1992), 133-142.
- [D-G-S] M. Denker, C. Grillenberger and K. Sigmund, Ergodic Theory on Compact Spaces, Lecture Notes in Math. 527, Springer, Berlin, 1976.
- [D] T. Downarowicz, The Choquet simplex of invariant measures for minimal flows, Israel J. Math. 74 (1991), 241-256.
- [D-K-L] T. Downarowicz, J. Kwiatkowski and Y. Lacroix, A criterion for Toeplitz flows to be topologically isomorphic and applications, Colloq. Math. 68 (1995), 219-228.
- [G-H] W. Gottschalk and G. A. Hedlund, Topological Dynamics, Amer. Math. Soc. Colloq. Publ. 36, 1955.
- [F] H. Furstenberg, Strict ergodicity and transformations of the torus, Amer. J. Math. 83 (1961), 573-601.
- [I] A. Iwanik, Toeplitz flows with pure point spectrum, preprint.
- [I-L] A. Iwanik and Y. Lacroix, Some constructions of strictly ergodic non-regular Toeplitz flows, Studia Math. 110 (1994), 191-203.
- [J-K] K. Jacobs and M. Keane, 0-1 sequences of Toeplitz type, Z. Wahrsch. Verw. Gebiete 13 (1969), 123-131.
- [O] J. C. Oxtoby, Ergodic sets, Bull. Amer. Math. Soc. 58 (1952), 116-136.
- [W] S. Williams, Toeplitz minimal flows which are not uniquely ergodic, Z. Wahrsch. Verw. Gebiete 67,(1984), 95-107.