ArticleOriginal scientific text
Title
On invariant measures for power bounded positive operators
Authors 1
Affiliations
- Department of Mathematics, Faculty of Science, Okayama University, Okayama, 700 Japan
Abstract
We give a counterexample showing that does not imply the existence of a strictly positive function u in with Tu = u, where T is a power bounded positive linear operator on of a σ-finite measure space. This settles a conjecture by Brunel, Horowitz, and Lin.
Keywords
power bounded and Cesàro bounded positive operators, invariant measures, spaces
Bibliography
- A. Brunel, Sur quelques problèmes de la théorie ergodique ponctuelle, Thèse, University of Paris, 1966.
- A. Brunel, S. Horowitz and M. Lin, On subinvariant measures for positive operators in
, Ann. Inst. H. Poincaré Probab. Statist. 29 (1993), 105-117. - Y. Derriennic and M. Lin, On invariant measures and ergodic theorems for positive operators, J. Funct. Anal. 13 (1973), 252-267.
- H. Fong, On invariant functions for positive operators, Colloq. Math. 22 (1970), 75-84.
- U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, 1985.
- R. Sato, Ergodic properties of bounded
-operators, Proc. Amer. Math. Soc. 39 (1973), 540-546. - L. Sucheston, On the ergodic theorem for positive operators I, Z. Wahrsch. Verw. Gebiete 8 (1967), 1-11.