ArticleOriginal scientific text

Title

On invariant measures for power bounded positive operators

Authors 1

Affiliations

  1. Department of Mathematics, Faculty of Science, Okayama University, Okayama, 700 Japan

Abstract

We give a counterexample showing that (I-T)L¯L+_{}={0} does not imply the existence of a strictly positive function u in L1 with Tu = u, where T is a power bounded positive linear operator on L1 of a σ-finite measure space. This settles a conjecture by Brunel, Horowitz, and Lin.

Keywords

power bounded and Cesàro bounded positive operators, invariant measures, L1 spaces

Bibliography

  1. A. Brunel, Sur quelques problèmes de la théorie ergodique ponctuelle, Thèse, University of Paris, 1966.
  2. A. Brunel, S. Horowitz and M. Lin, On subinvariant measures for positive operators in L1, Ann. Inst. H. Poincaré Probab. Statist. 29 (1993), 105-117.
  3. Y. Derriennic and M. Lin, On invariant measures and ergodic theorems for positive operators, J. Funct. Anal. 13 (1973), 252-267.
  4. H. Fong, On invariant functions for positive operators, Colloq. Math. 22 (1970), 75-84.
  5. U. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin, 1985.
  6. R. Sato, Ergodic properties of bounded L1-operators, Proc. Amer. Math. Soc. 39 (1973), 540-546.
  7. L. Sucheston, On the ergodic theorem for positive operators I, Z. Wahrsch. Verw. Gebiete 8 (1967), 1-11.
Pages:
183-189
Main language of publication
English
Received
1996-01-29
Accepted
1996-04-22
Published
1996
Exact and natural sciences