Czasopismo
Tytuł artykułu
Autorzy
Warianty tytułu
Języki publikacji
Abstrakty
Let ũ denote the conjugate Poisson integral of a function $f ∈ L^{p}(ℝ)$. We give conditions on a region Ω so that $lim_{(v,ε)→(0,0)}_{(v,ε)∈Ω} ũ(x+v,ε) = Hf(x)$, the Hilbert transform of f at x, for a.e. x. We also consider more general Calderón-Zygmund singular integrals and give conditions on a set Ω so that $sup_{(v,r)∈Ω} |ʃ_{|t|>r} k(x+v-t)f(t)dt|$ is a bounded operator on $L^p$, 1 < p < ∞, and is weak (1,1).
Kategorie tematyczne
Czasopismo
Rocznik
Tom
Numer
Strony
169-182
Opis fizyczny
Daty
wydano
1996
otrzymano
1995-10-31
poprawiono
1996-02-22
Twórcy
autor
- Departamento de Matemáticas, Universidad Nacional de Mar del Plata, Mar del Plata, Bs. As., Argentina , ferrando@bart.uni-mdp.edu.ar
autor
- Department of Mathematics, DePaul University, 2219 N. Kenmore, Chicago, Illinois 60614, U.S.A., rjones@condor.depaul.edu
autor
- Department of Mathematics, University at Albany, SUNY, 1400 Western Ave., Albany, New York 12222, U.S.A., reinhold@csc.albany.edu
Bibliografia
- [1] M. A. Akcoglu and Y. Déniel, Moving weighted averages, Canad. J. Math. 45 (1993), 449-469.
- [2] A. P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349-353.
- [3] P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335-400.
- [4] S. Ferrando, Moving ergodic theorems for superadditive processes, Ph.D. thesis, Univ. of Toronto, 1994.
- [5] A. Nagel and E. M. Stein, On certain maximal functions and approach regions, Adv. Math. 54 (1984), 83-106.
- [6] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
- [7] E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, N.J., 1993.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv120i2p169bwm