ArticleOriginal scientific text
Title
On approach regions for the conjugate Poisson integral and singular integrals
Authors 1, 2, 3
Affiliations
- Departamento de Matemáticas, Universidad Nacional de Mar del Plata, Mar del Plata, Bs. As., Argentina
- Department of Mathematics, DePaul University, 2219 N. Kenmore, Chicago, Illinois 60614, U.S.A.
- Department of Mathematics, University at Albany, SUNY, 1400 Western Ave., Albany, New York 12222, U.S.A.
Abstract
Let ũ denote the conjugate Poisson integral of a function . We give conditions on a region Ω so that
,
the Hilbert transform of f at x, for a.e. x. We also consider more general Calderón-Zygmund singular integrals and give conditions on a set Ω so that
is a bounded operator on , 1 < p < ∞, and is weak (1,1).
Keywords
cone condition, conjugate Poisson integral, singular integrals, ergodic Hilbert transform
Bibliography
- M. A. Akcoglu and Y. Déniel, Moving weighted averages, Canad. J. Math. 45 (1993), 449-469.
- A. P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349-353.
- P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335-400.
- S. Ferrando, Moving ergodic theorems for superadditive processes, Ph.D. thesis, Univ. of Toronto, 1994.
- A. Nagel and E. M. Stein, On certain maximal functions and approach regions, Adv. Math. 54 (1984), 83-106.
- E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
- E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, N.J., 1993.