ArticleOriginal scientific text

Title

On approach regions for the conjugate Poisson integral and singular integrals

Authors 1, 2, 3

Affiliations

  1. Departamento de Matemáticas, Universidad Nacional de Mar del Plata, Mar del Plata, Bs. As., Argentina
  2. Department of Mathematics, DePaul University, 2219 N. Kenmore, Chicago, Illinois 60614, U.S.A.
  3. Department of Mathematics, University at Albany, SUNY, 1400 Western Ave., Albany, New York 12222, U.S.A.

Abstract

Let ũ denote the conjugate Poisson integral of a function fLp(). We give conditions on a region Ω so that lim(v,ε)(0,0)_{(v,ε)Ω}ũ(x+v,ε)=Hf(x), the Hilbert transform of f at x, for a.e. x. We also consider more general Calderón-Zygmund singular integrals and give conditions on a set Ω so that (v,r)Ω|ʃ|t|>rk(x+v-t)f(t)dt| is a bounded operator on Lp, 1 < p < ∞, and is weak (1,1).

Keywords

cone condition, conjugate Poisson integral, singular integrals, ergodic Hilbert transform

Bibliography

  1. M. A. Akcoglu and Y. Déniel, Moving weighted averages, Canad. J. Math. 45 (1993), 449-469.
  2. A. P. Calderón, Ergodic theory and translation-invariant operators, Proc. Nat. Acad. Sci. U.S.A. 59 (1968), 349-353.
  3. P. Fatou, Séries trigonométriques et séries de Taylor, Acta Math. 30 (1906), 335-400.
  4. S. Ferrando, Moving ergodic theorems for superadditive processes, Ph.D. thesis, Univ. of Toronto, 1994.
  5. A. Nagel and E. M. Stein, On certain maximal functions and approach regions, Adv. Math. 54 (1984), 83-106.
  6. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
  7. E. M. Stein, Harmonic Analysis, Princeton Univ. Press, Princeton, N.J., 1993.
Pages:
169-182
Main language of publication
English
Received
1995-10-31
Accepted
1996-02-22
Published
1996
Exact and natural sciences