Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1996 | 120 | 2 | 113-153
Tytuł artykułu

Closed ideals in certain Beurling algebras, and synthesis of hyperdistributions

Treść / Zawartość
Warianty tytułu
Języki publikacji
We consider the ideal structure of two topological Beurling algebras which arise naturally in the study of closed ideals of $A^{+}$. Even in the case of closed ideals I such that $h(I) = E_{1/p}$, the perfect symmetric set of constant ratio 1/p, some questions remain open, despite the fact that closed ideals J of $A^{+}$ such that $h(J) = E_{1/p}$ can be completely described in terms of inner functions. The ideal theory of the topological Beurling algebras considered in this paper is related to questions of synthesis for hyperdistributions such that $lim sup_{n→-∞}$ |\hatφ(n)| < ∞$ and such that $lim sup_{n→∞} (log^{+}|\hatφ(n)|)/√n < ∞$.
Słowa kluczowe
Opis fizyczny
  • Laboratoire de Mathématiques Pures, ERS 0127, Université Bordeaux I, 351, Cours de la Libération, 33405 Talence Cedex, France
  • [1] A. Atzmon, Operators which are annihilated by analytic functions and invariant subspaces, Acta Math. 144 (1980), 27-63.
  • [2] A. Atzmon, Operators with resolvent of bounded characteristic, Integral Equations Oper. Theory 6 (1983), 779-802.
  • [3] C. Bennett and J. E. Gilbert, Homogeneous algebras on the circle: I--Ideals of analytic functions, Ann. Inst. Fourier (Grenoble) 22 (3) (1972), 1-19.
  • [4] L. Carleson, Sets of uniqueness of functions regular in the unit circle, Acta Math. 87 (1952), 325-345.
  • [5] I. Domar, On the analytic transform of bounded linear functionals on certain Banach algebras, Studia Math. 53 (1975), 203-224.
  • [6] R. G. Douglas, H. S. Shapiro and A. L. Shields, Cyclic vectors and invariant subspaces for the backward shift operator, Ann. Inst. Fourier (Grenoble) 20 (1) (1970), 37-76.
  • [7] J. Esterle, Quasimultipliers, representations of $H^∞$, and the closed ideal problem for commutative Banach algebras, in: Lecture Notes in Math. 975, Springer, 1983, 66-162.
  • [8] J. Esterle, Distributions on Kronecker sets, strong forms of uniqueness, and closed ideals of $A^+$, J. Reine Angew. Math. 450 (1994), 43-82.
  • [9] J. Esterle, Uniqueness, strong forms of uniqueness and negative powers of contractions, in: Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., 1994, 127-145.
  • [10] J. Esterle, M. Rajoelina and M. Zarrabi, On contractions with spectrum contained in the Cantor set, Math. Proc. Cambridge Philos. Soc. 117 (1995), 339-343.
  • [11] J. Esterle, E. Strouse and F. Zouakia, Closed ideals of the algebra of absolutely convergent Taylor series, Bull. Amer. Math. Soc. 31 (1994), 39-43.
  • [12] J. Esterle, E. Strouse and F. Zouakia, Closed ideals of $A^+$ and the Cantor set, J. Reine Angew. Math. 449 (1994), 65-79.
  • [13] C. C. Graham and O. C. McGehee, Essays in Commutative Harmonic Analysis, Springer, Berlin, 1979.
  • [14] V. P. Gurariĭ, Harmonic analysis in spaces with a weight, Trans. Moscow Math. Soc. 35 (1979), 21-75.
  • [15] K. Hoffman, Banach Spaces of Analytic Functions, Prentice-Hall, Englewood Cliffs, N.J., 1962.
  • [16] J. P. Kahane, Séries de Fourier absolument convergentes, Ergeb. Math. Grenzgeb. 50, Springer, Berlin, 1970.
  • [17] J. P. Kahane, Idéaux fermés dans certaines algèbres de fonctions analytiques, in: Lecture Notes in Math. 336, Springer, 1973, 5-14.
  • [18] J. P. Kahane et R. Salem, Ensembles parfaits et séries trigonométriques, Hermann, Paris, 1963.
  • [19] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, 1968.
  • [20] K. Kellay, Synthèse des hyperdistributions à coefficients de Fourier négatifs bornés, in preparation.
  • [21] B. Korenblyum, Closed ideals in the ring $A^n$, Functional Anal. Appl. 6 (1972), 203-214.
  • [22] A. L. Matheson, Closed ideals in rings of analytic functions satisfying a Lipschitz condition, in: Lecture Notes in Math. 604, Springer, 1976, 67-72.
  • [23] I. I. Privalov, Randeigenschaften analytischer Funktionen, Zweite Aufl., Deutsch. Verlag Wiss., Berlin, 1956.
  • [24] W. Rudin, Real and Complex Analysis, McGraw-Hill, New York, 1966.
  • [25] B. A. Taylor and D. L. Williams, Ideals in rings of analytic functions with smooth boundary values, Canad. J. Math. 22 (1970), 1266-1283.
  • [26] G. S. Tumarkin, Description of a class of functions approximable by rational functions with fixed poles, Izv. Akad. Nauk Armyansk. SSR 2 (1966), 89-105 (in Russian).
  • [27] M. Zarrabi, Synthèse spectrale dans certaines algèbres de Beurling sur le cercle unité, Bull. Soc. Math. France 118 (1990), 241-249.
  • [28] M. Zarrabi, Contractions à spectre dénombrable et propriétés d'unicité des fermés dénombrables du cercle, Ann. Inst. Fourier (Grenoble) 43 (1) (1993), 251-263.
  • [29] E. H. Zerouali, Synthèse spectrale dans une certaine limite projective d'algèbres de Beurling, Ann. Sci. Math. Québec 16 (1992), 109-115.
  • [30] E. H. Zerouali, Ensembles universels de synthèse pour les algèbres de Beurling, Bull. Sci. Math. (2) 118 (1994), 209-223.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.