ArticleOriginal scientific text
Title
Convolution operators on Hardy spaces
Authors 1
Affiliations
- Department of Mathematics, National Central University, Chung-li, Taiwan 32054, Republic of China
Abstract
We give sufficient conditions on the kernel K for the convolution operator Tf = K ∗ f to be bounded on Hardy spaces , where G is a homogeneous group.
Keywords
atomic decomposition, Hardy spaces, homogeneous groups
Bibliography
- [CW1] R. R. Coifman and G. Weiss, Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, Lecture Notes in Math. 242, Springer, Berlin, 1971.
- [CW2] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- [FS] G. B. Folland and E. M. Stein, Hardy Spaces on Homogeneous Groups, Math. Notes 28, Princeton Univ. Press, Princeton, N.J., 1982.
- [HJTW] Y. Han, B. Jawerth, M. Taibleson, and G. Weiss, Littlewood-Paley theory and ϵ-families of operators, Colloq. Math. 60//61 (1990), 321-359.
- [L] C.-C. Lin,
multipliers and their - estimates on the Heisenberg group, Rev. Mat. Iberoamericana 11 (1995), 269-308. - [S] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
- [TW] M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 67-149.