ArticleOriginal scientific text
Title
Spectral characterizations of central elements in Banach algebras
Authors 1, 2
Affiliations
- PF, University of Maribor, Koroška 160, 62000 Maribor, Slovenia
- TF, University of Maribor, Smetanova 17, 62000 Maribor, Slovenia
Abstract
Let A be a complex unital Banach algebra. We characterize elements belonging to Γ(A), the set of elements central modulo the radical. Our result extends and unifies several known characterizations of elements in Γ(A).
Bibliography
- B. Aupetit, A Primer on Spectral Theory, Springer, New York, 1991.
- M. Brešar, Derivations decreasing the spectral radius, Arch. Math. (Basel) 61 (1993), 160-162.
- R. E. Curto and M. Mathieu, Spectrally bounded generalized inner derivations, Proc. Amer. Math. Soc. 123 (1995), 2431-2434.
- S. Grabiner, The spectral diameter in Banach algebras, ibid. 91 (1984), 59-63.
- M. Mathieu, Where to find the image of a derivation, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1994, 237-249.
- V. Pták, Derivations, commutators and the radical, Manuscripta Math. 23 (1978), 355-362.
- V. Pták, Commutators in Banach algebras, Proc. Edinburgh Math. Soc. 22 (1979), 207-211.
- J. Zemánek, Idempotents in Banach algebras, Bull. London Math. Soc. 11 (1979), 177-183.
- J. Zemánek, Properties of the spectral radius in Banach algebras, in: Spectral Theory, Banach Center Publ. 8, PWN-Polish Scientific Publ., Warszawa, 1982, 579-595.