Let A be a complex unital Banach algebra. We characterize elements belonging to Γ(A), the set of elements central modulo the radical. Our result extends and unifies several known characterizations of elements in Γ(A).
TF, University of Maribor, Smetanova 17, 62000 Maribor, Slovenia
Bibliografia
[1] B. Aupetit, A Primer on Spectral Theory, Springer, New York, 1991.
[2] M. Brešar, Derivations decreasing the spectral radius, Arch. Math. (Basel) 61 (1993), 160-162.
[3] R. E. Curto and M. Mathieu, Spectrally bounded generalized inner derivations, Proc. Amer. Math. Soc. 123 (1995), 2431-2434.
[4] S. Grabiner, The spectral diameter in Banach algebras, ibid. 91 (1984), 59-63.
[5] M. Mathieu, Where to find the image of a derivation, in: Functional Analysis and Operator Theory, Banach Center Publ. 30, Institute of Mathematics, Polish Academy of Sciences, Warszawa, 1994, 237-249.
[6] V. Pták, Derivations, commutators and the radical, Manuscripta Math. 23 (1978), 355-362.
[7] V. Pták, Commutators in Banach algebras, Proc. Edinburgh Math. Soc. 22 (1979), 207-211.
[8] J. Zemánek, Idempotents in Banach algebras, Bull. London Math. Soc. 11 (1979), 177-183.
[9] J. Zemánek, Properties of the spectral radius in Banach algebras, in: Spectral Theory, Banach Center Publ. 8, PWN-Polish Scientific Publ., Warszawa, 1982, 579-595.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv120i1p47bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.