ArticleOriginal scientific text

Title

Multiplicative functionals and entire functions

Authors 1, 2

Affiliations

  1. Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
  2. Southern Illinois University at Edwardsville, Edwardsville, Illinois 62026, U.S.A.

Abstract

Let A be a complex Banach algebra with a unit e, let T, φ be continuous functionals, where T is linear, and let F be a nonlinear entire function. If T ∘ F = F ∘ φ and T(e) = 1 then T is multiplicative.

Bibliography

  1. R. Arens, On a theorem of Gleason, Kahane and Żelazko, Studia Math. 87 (1987), 193-196.
  2. C. Badea, The Gleason-Kahane-Żelazko theorem, Rend. Circ. Mat. Palermo Suppl. 33 (1993), 177-188.
  3. J. B. Conway, Functions of One Complex Variable, Grad. Texts in Math. 11, Springer, 1986.
  4. T. W. Gamelin, Uniform Algebras, Chelsea, New York, 1984.
  5. A. M. Gleason, A characterization of maximal ideals, J. Anal. Math. 19 (1967), 171-172.
  6. K. Jarosz, Generalizations of the Gleason-Kahane-Żelazko theorem, Rocky Mountain J. Math. 21 (1991), 915-921.
  7. J.-P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339-343.
  8. G. Pólya and G. Szegö, Problems and Theorems in Analysis II, Springer, 1976.
  9. Z. Sawoń and A. Warzecha, On the general form of subalgebras of codimension 1 of Banach algebras with a unit, Studia Math. 29 (1968), 249-260.
  10. W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, ibid. 30 (1968), 83-85.
Pages:
289-297
Main language of publication
English
Received
1996-03-18
Published
1996
Exact and natural sciences