ArticleOriginal scientific text
Title
Multiplicative functionals and entire functions
Authors 1, 2
Affiliations
- Institute of Mathematics, Warsaw University, Banacha 2, 02-097 Warszawa, Poland
- Southern Illinois University at Edwardsville, Edwardsville, Illinois 62026, U.S.A.
Abstract
Let A be a complex Banach algebra with a unit e, let T, φ be continuous functionals, where T is linear, and let F be a nonlinear entire function. If T ∘ F = F ∘ φ and T(e) = 1 then T is multiplicative.
Bibliography
- R. Arens, On a theorem of Gleason, Kahane and Żelazko, Studia Math. 87 (1987), 193-196.
- C. Badea, The Gleason-Kahane-Żelazko theorem, Rend. Circ. Mat. Palermo Suppl. 33 (1993), 177-188.
- J. B. Conway, Functions of One Complex Variable, Grad. Texts in Math. 11, Springer, 1986.
- T. W. Gamelin, Uniform Algebras, Chelsea, New York, 1984.
- A. M. Gleason, A characterization of maximal ideals, J. Anal. Math. 19 (1967), 171-172.
- K. Jarosz, Generalizations of the Gleason-Kahane-Żelazko theorem, Rocky Mountain J. Math. 21 (1991), 915-921.
- J.-P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Math. 29 (1968), 339-343.
- G. Pólya and G. Szegö, Problems and Theorems in Analysis II, Springer, 1976.
- Z. Sawoń and A. Warzecha, On the general form of subalgebras of codimension 1 of Banach algebras with a unit, Studia Math. 29 (1968), 249-260.
- W. Żelazko, A characterization of multiplicative linear functionals in complex Banach algebras, ibid. 30 (1968), 83-85.