ArticleOriginal scientific text

Title

Fréchet algebras and formal power series

Authors 1

Affiliations

  1. Department of Pure Mathematics and Mathematical Statistics, University of Cambridge, 16 Mill Lane, Cambridge CB2 1SB, United Kingdom

Abstract

The class of elements of locally finite closed descent in a commutative Fréchet algebra is introduced. Using this notion, those commutative Fréchet algebras in which the algebra ℂ[[X]] may be embedded are completely characterized, and some applications to the theory of automatic continuity are given.

Bibliography

  1. G. R. Allan, Embedding the algebra of formal power series in a Banach algebra, Proc. London Math. Soc. (3) 25 (1972), 329-340.
  2. G. R. Allan, Elements of finite closed descent in a Banach algebra, J. London Math. Soc. (2) 7 (1973), 462-466.
  3. G. R. Allan, A remark in automatic continuity theory, Bull. London Math. Soc. 12 (1980), 452-454.
  4. R. F. Arens, Linear topological division algebras, Bull. Amer. Math. Soc. 53 (1947), 632-630.
  5. R. F. Arens, A generalization of normed rings, Pacific J. Math. 2 (1952), 455-471.
  6. R. F. Arens, Dense inverse limit rings, Michigan Math. J. 5 (1958), 169-182.
  7. H. Cartan, Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes, Hermann, Paris, 1963.
  8. H. G. Dales, Automatic continuity: a survey, Bull. London Math. Soc. 10 (1978), 129-183.
  9. J. Esterle, Elements for a classification of commutative radical Banach algebras, in: Radical Banach Algebras and Automatic Continuity, J. Bachar et al. (eds.), Lecture Notes in Math. 975, Springer, 1983, 4-65.
  10. J. Esterle, Mittag-Leffler methods in the theory of Banach algebras and a new approach to Michael's problem, in: Contemp. Math. 32, Amer. Math. Soc., 1984, 107-129.
  11. E. A. Michael, Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc. 11 (1953; third printing 1971).
Pages:
271-288
Main language of publication
English
Received
1996-01-29
Accepted
1996-03-06
Published
1996
Exact and natural sciences