ArticleOriginal scientific text

Title

A note on a formula for the fractional powers of infinitesimal generators of semigroups

Authors 1, 1

Affiliations

  1. Departament de Matemàtica Aplicada, Universitat de València, 46100 Burjassot, València, Spain

Abstract

If -A is the generator of an equibounded C0-semigroup and 0 < Re α < m (m integer), its fractional power Aα can be described in terms of the semigroup, through a formula that is only valid if a certain function Kα,m is nonzero. This paper is devoted to the study of the zeros of Kα,m.

Bibliography

  1. A. V. Balakrishnan, Fractional powers of closed operators and semigroups generated by them, Pacific J. Math. 10 (1960), 419-437.
  2. H. Berens, P. L. Butzer and U. Westphal, Representation of fractional powers of infinitesimal generators of semigroups, Bull. Amer. Math. Soc. 74 (1968), 191-196.
  3. H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966), 285-346.
  4. H. Komatsu, Fractional powers of operators, II. Interpolation spaces, ibid. 21 (1967), 89-111.
  5. H. Komatsu, Fractional powers of operators, III. Negative powers, J. Math. Soc. Japan 21 (1969), 205-220.
  6. O. E. Landford and W. Robinson, Fractional powers of generators of equicontinuous semigroups and fractional derivatives, J. Austral. Math. Soc. Ser. A 46 (1989), 473-504.
  7. J. L. Lions et J. Peetre, Sur une classe d'espaces d'interpolation, Publ. Math. Inst. Hautes Etudes Sci. 19 (1964), 5-68.
  8. C. Martinez and M. Sanz, Fractional powers of non-densely defined operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 18 (1991), 443-454.
  9. C. Martinez, M. Sanz and L. Marco, Fractional powers of operators, J. Math. Soc. Japan 40 (1988), 331-347.
  10. J. D. Stafney, Integral representations of fractional powers of infinitesimal generators, Illinois J. Math. 20 (1976), 124-133.
  11. U. Westphal, An approach to fractional powers of operators via fractional differences, Proc. London Math. Soc. (3) 29 (1974), 557-576.
Pages:
247-254
Main language of publication
English
Accepted
1995-10-25
Published
1996
Exact and natural sciences