ArticleOriginal scientific text
Title
A note on a formula for the fractional powers of infinitesimal generators of semigroups
Authors 1, 1
Affiliations
- Departament de Matemàtica Aplicada, Universitat de València, 46100 Burjassot, València, Spain
Abstract
If -A is the generator of an equibounded -semigroup and 0 < Re α < m (m integer), its fractional power can be described in terms of the semigroup, through a formula that is only valid if a certain function is nonzero. This paper is devoted to the study of the zeros of .
Bibliography
- A. V. Balakrishnan, Fractional powers of closed operators and semigroups generated by them, Pacific J. Math. 10 (1960), 419-437.
- H. Berens, P. L. Butzer and U. Westphal, Representation of fractional powers of infinitesimal generators of semigroups, Bull. Amer. Math. Soc. 74 (1968), 191-196.
- H. Komatsu, Fractional powers of operators, Pacific J. Math. 19 (1966), 285-346.
- H. Komatsu, Fractional powers of operators, II. Interpolation spaces, ibid. 21 (1967), 89-111.
- H. Komatsu, Fractional powers of operators, III. Negative powers, J. Math. Soc. Japan 21 (1969), 205-220.
- O. E. Landford and W. Robinson, Fractional powers of generators of equicontinuous semigroups and fractional derivatives, J. Austral. Math. Soc. Ser. A 46 (1989), 473-504.
- J. L. Lions et J. Peetre, Sur une classe d'espaces d'interpolation, Publ. Math. Inst. Hautes Etudes Sci. 19 (1964), 5-68.
- C. Martinez and M. Sanz, Fractional powers of non-densely defined operators, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 18 (1991), 443-454.
- C. Martinez, M. Sanz and L. Marco, Fractional powers of operators, J. Math. Soc. Japan 40 (1988), 331-347.
- J. D. Stafney, Integral representations of fractional powers of infinitesimal generators, Illinois J. Math. 20 (1976), 124-133.
- U. Westphal, An approach to fractional powers of operators via fractional differences, Proc. London Math. Soc. (3) 29 (1974), 557-576.