ArticleOriginal scientific text

Title

Regularity properties of singular integral operators

Authors 1

Affiliations

  1. Equipe d'Analyse et de Mathématiques Appliquées, Université Marne-la-Vallée, 2, Rue de la Butte Verte, 93166 Noisy-le-Grand Cedex, France

Abstract

For s>0, we consider bounded linear operators from D(n) into D(n) whose kernels K satisfy the conditions |xγK(x,y)|Cγ|x-y|-n+s-|γ| for x≠y, |γ|≤ [s]+1, |yxγK(x,y)|Cγ|x-y|-n+s-|γ|-1 for |γ|=[s], x≠y. We establish a new criterion for the boundedness of these operators from L2(n) into the homogeneous Sobolev space s(n). This is an extension of the well-known T(1) Theorem due to David and Journé. Our arguments make use of the function T(1) and the BMO-Sobolev space. We give some applications to the Besov and Triebel-Lizorkin spaces as well as some other potential spaces.

Bibliography

  1. G. Bourdaud, Analyse fonctionnelle dans l'espace Euclidien, Publ. Math. Paris VII 23, 1987.
  2. G. Bourdaud, Réalisation des espaces de Besov homogènes, Ark. Mat. 26 (1988), 41-54.
  3. G. Bourdaud, Une algèbre maximale d'opérateurs pseudo-différentiels, Comm. Partial Differential Equations 13 (1988), 1059-1083.
  4. A. P. Calderón, Commutators of singular integral operators, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1092-1099.
  5. R. Coifman et Y. Meyer, Au-delà des opérateurs pseudo-différentiels, Astérisque 57 (1978).
  6. G. David and J.-L. Journé, A boundedness criterion for generalized Calderón-Zygmund operators, Ann. of Math. 120 (1984), 371-397.
  7. M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799.
  8. M. Frazier and B. Jawerth, A discrete transform and applications to distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
  9. M. Frazier, R. Torres and G. Weiss, The boundedness of Calderón-Zygmund operators on the spaces α,qp, Rev. Math. Iberoamericana 4 (1988), 41-72.
  10. L. Hörmander, Pseudo-differential operators of type 1,1, Comm. Partial Differential Equations 13 (1988), 1085-1111.
  11. L. Hörmander, Continuity of pseudo-differential operators of type 1,1, ibid. 14 (1989), 231-243.
  12. M. Meyer, Une classe d'espace fonctionnels de type BMO. Application aux intégrales singulières, Ark. Mat. 27 (1989), 305-318.
  13. Y. Meyer, Régularité des solutions des équations aux dérivées partielles non linéaires, in: Lecture Notes in Math. 842, Springer, 1980, 293-302.
  14. Y. Meyer, Ondelettes et Opérateurs, I, II, Hermann, 1990.
  15. L. Päivärinta, Pseudo-differential operators in Hardy-Triebel spaces, Z. Anal. Anwendungen 2 (1983), 235-242.
  16. J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. 1, Durham, N.C., 1976.
  17. T. Runst, Pseudo-differential operators of the "exotic" class L1,10 in spaces of Besov and Triebel-Lizorkin type, Ann. Global Anal. Geom. 3 (1985), 13-28.
  18. R. S. Strichartz, Bounded mean oscillation and Sobolev spaces, Indiana Univ. Math. J. 29 (1980), 539-558.
  19. M. S. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, 1991.
  20. R. Torres, Continuity properties of pseudodifferential operators of type 1,1, Comm. Partial Differential Equations 15 (1990), 1313-1328.
  21. H. Triebel, Theory of Function Spaces, Geest & Portig, Leipzig, and Birkhäuser, 1983.
  22. H. Triebel, Theory of Function Spaces II, Birkhäuser, Basel, 1992.
  23. A. Youssfi, Continuité-Besov des opérateurs définis par des intégrales singulières, Manuscripta Math. 65 (1989), 289-310.
  24. A. Youssfi, Commutators on Besov spaces and factorization of the paraproduct, Bull. Sci. Math. 119 (1995), 157-186.
  25. A. Youssfi, Regularity properties of commutators and BMO-Triebel-Lizorkin spaces, Ann. Inst. Fourier (Grenoble) 43 (1995), 795-807.
Pages:
199-217
Main language of publication
English
Received
1994-12-19
Accepted
1996-04-01
Published
1996
Exact and natural sciences