ArticleOriginal scientific text
Title
Existence, uniqueness and ergodicity for the stochastic quantization equation
Authors 1, 1
Affiliations
- School of Mathematics, The University of New South Wales, Sydney 2052, Australia
Abstract
Existence, uniqueness and ergodicity of weak solutions to the equation of stochastic quantization in finite volume is obtained as a simple consequence of the Girsanov theorem.
Keywords
Wick powers, Nelson estimates, stochastic quantization, stationary measure, ergodicity
Bibliography
- [AR] S. Albeverio and M. Röckner, Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms, Probab. Theory Related Fields 89 (1991), 347-386.
- [BCM] V. S. Borkar, R. T. Chari and S. K. Mitter, Stochastic quantization of field theory in finite and infinite volume, J. Funct. Anal. 81 (1988), 184-206.
- [DZ] G. DaPrato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992.
- [H] R. Z. Hasminskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Aalpen an den Rijn, 1980.
- [HK] Y. Z. Hu and G. Kallianpur, Singular infinite-dimensional SDE and stochastic quantization of
field, submitted. - [IW] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981.
- [JM] G. Jona-Lasinio and P. K. Mitter, On the stochastic quantization of field theory, Comm. Math. Phys. 101 (1985), 409-436.
- [LS] R. S. Liptser and A. N. Shiryaev, Statistics of Random Processes, Springer, New York, 1977.
- [MT] S. P. Meyn and R. L. Tweedie, Stability of Markovian processes II: continuous-time processes and sampled chains, Adv. Appl. Probab. 25 (1993), 487-517.
- [PW] G. Parisi and Y. S. Wu, Perturbation theory without gauge fixing, Sci. Sinica 24 (1981), 483-496.
- [Si] B. Simon, The
Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, 1974. - [St] Ł. Stettner, Remarks on ergodic conditions for Markov processes on Polish spaces, Bull. Polish Acad. Sci. Math. 42 (1994), 103-114.
- [W] L. Wu, Feynman-Kac semigroups, ground state diffusions and large deviations, J. Funct. Anal. 123 (1994), 202-231.