Existence, uniqueness and ergodicity of weak solutions to the equation of stochastic quantization in finite volume is obtained as a simple consequence of the Girsanov theorem.
School of Mathematics, The University of New South Wales, Sydney 2052, Australia
Bibliografia
[AR] S. Albeverio and M. Röckner, Stochastic differential equations in infinite dimensions: solutions via Dirichlet forms, Probab. Theory Related Fields 89 (1991), 347-386.
[BCM] V. S. Borkar, R. T. Chari and S. K. Mitter, Stochastic quantization of field theory in finite and infinite volume, J. Funct. Anal. 81 (1988), 184-206.
[DZ] G. DaPrato and J. Zabczyk, Stochastic Equations in Infinite Dimensions, Cambridge University Press, 1992.
[H] R. Z. Hasminskii, Stochastic Stability of Differential Equations, Sijthoff and Noordhoff, Aalpen an den Rijn, 1980.
[HK] Y. Z. Hu and G. Kallianpur, Singular infinite-dimensional SDE and stochastic quantization of $P(ϕ)_2$ field, submitted.
[IW] N. Ikeda and S. Watanabe, Stochastic Differential Equations and Diffusion Processes, North-Holland, Amsterdam, 1981.
[JM] G. Jona-Lasinio and P. K. Mitter, On the stochastic quantization of field theory, Comm. Math. Phys. 101 (1985), 409-436.
[LS] R. S. Liptser and A. N. Shiryaev, Statistics of Random Processes, Springer, New York, 1977.
[MT] S. P. Meyn and R. L. Tweedie, Stability of Markovian processes II: continuous-time processes and sampled chains, Adv. Appl. Probab. 25 (1993), 487-517.
[PW] G. Parisi and Y. S. Wu, Perturbation theory without gauge fixing, Sci. Sinica 24 (1981), 483-496.
[Si] B. Simon, The $P(ϕ)_2$ Euclidean (Quantum) Field Theory, Princeton University Press, Princeton, 1974.
[St] Ł. Stettner, Remarks on ergodic conditions for Markov processes on Polish spaces, Bull. Polish Acad. Sci. Math. 42 (1994), 103-114.
[W] L. Wu, Feynman-Kac semigroups, ground state diffusions and large deviations, J. Funct. Anal. 123 (1994), 202-231.