PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1996 | 119 | 2 | 161-178
Tytuł artykułu

Amenability of Banach and C*-algebras on locally compact groups

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Several results are given about the amenability of certain algebras defined by locally compact groups. The algebras include the C*-algebras and von Neumann algebras determined by the representation theory of the group, the Fourier algebra A(G), and various subalgebras of these.
Słowa kluczowe
Czasopismo
Rocznik
Tom
119
Numer
2
Strony
161-178
Opis fizyczny
Daty
wydano
1996
otrzymano
1995-06-05
poprawiono
1996-02-19
Twórcy
autor
autor
autor
Bibliografia
  • [1] A. Bérlanger and B. E. Forrest, Geometric properties of coefficient function spaces determined by unitary representations of a locally compact group, J. Math. Anal. Appl. 193 (1995), 390-405.
  • [2] F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, New York, 1973.
  • [3] G. Brown and W. Moran, Point derivations on M(G), Bull. London Math. Soc. 8 (1976), 57-64.
  • [4] J. W. Bunce, Finite operators and amenable C*-algebras, Proc. Amer. Math. Soc. 56 (1976), 145-151.
  • [5] M. D. Choi and E. Effros, Nuclear C*-algebras and the approximation property, Amer. J. Math. 100 (1978), 61-80.
  • [6] E. Christensen and A. M. Sinclair, Completely bounded isomorphisms of injective von Neumann algebras, Proc. Edinburgh Math. Soc. 32 (1989), 317-327.
  • [7] C.-H. Chu and B. Iochum, The Dunford-Pettis property in C*-algebras, Studia Math. 97 (1990), 59-64.
  • [8] C.-H. Chu, B. Iochum and S. Watanabe, C*-algebras with the Dunford-Pettis property, in: Function Spaces, K. Jarosz (ed.), Dekker, New York, 1992, 67-70.
  • [9] A. Connes, On the cohomology of operator algebras, J. Funct. Anal. 28 (1978), 248-253.
  • [10] M. Cowling and P. Rodway, Restrictions of certain function spaces to closed subgroups of locally compact groups, Pacific J. Math. 80 (1979), 91-104.
  • [11] P. C. Curtis, Jr., and R. J. Loy, The structure of amenable Banach algebras, J. London Math. Soc. (2) 40 (1989), 89-104.
  • [12] J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 309-325.
  • [13] J. Duncan and I. Namioka, Amenability of inverse semigroups and their semigroup algebras, ibid. 80 (1978), 309-321.
  • [14] J. Duncan and A. L. T. Paterson, Amenability for discrete convolution semigroup algebras, Math. Scand. 66 (1990), 141-146.
  • [15] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
  • [16] E. Formanek, The type I part of the regular representation, Canad. J. Math. 26 (1974), 1086-1089.
  • [17] F. Ghahramani and A. T.-M. Lau, Multipliers and ideals in second conjugate algebras related to group algebras, J. Funct. Anal. 132 (1995), 170-191.
  • [18] F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc., to appear.
  • [19] E. Granirer, Weakly almost periodic and uniformly continuous functions on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 189 (1974), 371-382.
  • [20] N. Grønbæk, Amenability of discrete convolution algebras, the commutative case, Pacific. J. Math. 143 (1990), 243-249.
  • [21] U. Haagerup, All nuclear C*-algebras are amenable, Invent. Math. 74 (1983), 305-319.
  • [22] M. Hamana, On linear topological properties of some C*-algebras, Tôhoku Math. J. 29 (1977), 157-163.
  • [23] A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Kluwer, Dordrecht, 1989.
  • [24] B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
  • [25] M. F. Hutchinson, Non-tall compact groups admit infinite Sidon sets, J. Austral. Math. Soc. 23 (1977), 467-475.
  • [26] I. M. Isaacs and D. S. Passman, Groups with representations of bounded degree, Canad. J. Math. 16 (1964), 299-309.
  • [27] B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
  • [28] B. E. Johnson, Non-amenability of the Fourier algebra of a compact group, J. London Math. Soc. (2) 50 (1994), 361-374.
  • [29] A. Kaniuth, On the conjugate representation of a locally compact group, Math. Z. 202 (1989), 275-288.
  • [30] A. T.-M. Lau, Uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 251 (1979), 39-59.
  • [31] A. T.-M. Lau, The second conjugate algebra of the Fourier algebra of a locally compact group, ibid. 267 (1981), 53-63.
  • [32] A. T.-M. Lau and V. Losert, The C*-algebra generated by operators with compact support on a locally compact group, J. Funct. Anal. 112 (1993), 1-30.
  • [33] A. T.-M. Lau and R. J. Loy, Amenability of convolution algebras, Math. Scand., to appear.
  • [34] A. T.-M. Lau and A. L. T. Paterson, Inner amenable locally compact groups, Trans. Amer. Math. Soc. 325 (1991), 155-169.
  • [35] J. R. McMullen and J. F. Price, Rudin-Shapiro sequences for arbitrary compact groups, J. Austral. Math. Soc. 22 (1976), 421-430.
  • [36] C. C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401-410.
  • [37] T. W. Palmer, Classes of non-abelian, non-compact locally compact groups, Rocky Mountain J. Math. 8 (1973), 683-741.
  • [38] A. L. T. Paterson, Amenability, Math. Surveys Monographs 29, Amer. Math. Soc., Providence, 1988.
  • [39] G. K. Pederson, C*-Algebras and their Automorphism Groups, Academic Press, London, 1979.
  • [40] P. F. Renauld, Invariant means on a class of von Neumann algebras, Trans. Amer. Math. Soc. 170 (1972), 285-291.
  • [41] R. R. Smith and D. P. Williams, The decomposition property for C*-algebras, J. Operator Theory 16 (1986), 51-74.
  • [42] A. Szankowski, B (H) does not have the approximation property, Acta Math. 147 (1981), 89-108.
  • [43] M. Takesaki, Theory of Operator Algebras I, Springer, New York, 1979.
  • [44] K. Taylor, The type structure of the regular representation of a locally compact group, Math. Ann. 222 (1976), 211-214.
  • [45] E. Thoma, Eine Charakterisierung diskreter Gruppen vom typ 1, Invent. Math. 6 (1968), 190-196.
  • [46] S. Wassermann, On tensor products of certain group C*-algebras, J. Funct. Anal. 23 (1976), 239-254.
  • [47] P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Univ. Press, Cambridge, 1991.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv119i2p161bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.