ArticleOriginal scientific text
Title
Amenability of Banach and C*-algebras on locally compact groups
Authors 1, 2, 3
Affiliations
- Department of Mathematical Sciences, University of Alberta, Edmonton, Alberta, T6G 2G1, Canada
- Department of Mathematics, Australian National University, Canberra, ACT, 0200, Australia
- Department of Mathematics, The University of Newcastle Newcastle, New South Wales 2308, Australia
Abstract
Several results are given about the amenability of certain algebras defined by locally compact groups. The algebras include the C*-algebras and von Neumann algebras determined by the representation theory of the group, the Fourier algebra A(G), and various subalgebras of these.
Bibliography
- A. Bérlanger and B. E. Forrest, Geometric properties of coefficient function spaces determined by unitary representations of a locally compact group, J. Math. Anal. Appl. 193 (1995), 390-405.
- F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, New York, 1973.
- G. Brown and W. Moran, Point derivations on M(G), Bull. London Math. Soc. 8 (1976), 57-64.
- J. W. Bunce, Finite operators and amenable C*-algebras, Proc. Amer. Math. Soc. 56 (1976), 145-151.
- M. D. Choi and E. Effros, Nuclear C*-algebras and the approximation property, Amer. J. Math. 100 (1978), 61-80.
- E. Christensen and A. M. Sinclair, Completely bounded isomorphisms of injective von Neumann algebras, Proc. Edinburgh Math. Soc. 32 (1989), 317-327.
- C.-H. Chu and B. Iochum, The Dunford-Pettis property in C*-algebras, Studia Math. 97 (1990), 59-64.
- C.-H. Chu, B. Iochum and S. Watanabe, C*-algebras with the Dunford-Pettis property, in: Function Spaces, K. Jarosz (ed.), Dekker, New York, 1992, 67-70.
- A. Connes, On the cohomology of operator algebras, J. Funct. Anal. 28 (1978), 248-253.
- M. Cowling and P. Rodway, Restrictions of certain function spaces to closed subgroups of locally compact groups, Pacific J. Math. 80 (1979), 91-104.
- P. C. Curtis, Jr., and R. J. Loy, The structure of amenable Banach algebras, J. London Math. Soc. (2) 40 (1989), 89-104.
- J. Duncan and S. A. R. Hosseiniun, The second dual of a Banach algebra, Proc. Roy. Soc. Edinburgh Sect. A 84 (1979), 309-325.
- J. Duncan and I. Namioka, Amenability of inverse semigroups and their semigroup algebras, ibid. 80 (1978), 309-321.
- J. Duncan and A. L. T. Paterson, Amenability for discrete convolution semigroup algebras, Math. Scand. 66 (1990), 141-146.
- P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181-236.
- E. Formanek, The type I part of the regular representation, Canad. J. Math. 26 (1974), 1086-1089.
- F. Ghahramani and A. T.-M. Lau, Multipliers and ideals in second conjugate algebras related to group algebras, J. Funct. Anal. 132 (1995), 170-191.
- F. Ghahramani, R. J. Loy and G. A. Willis, Amenability and weak amenability of second conjugate Banach algebras, Proc. Amer. Math. Soc., to appear.
- E. Granirer, Weakly almost periodic and uniformly continuous functions on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 189 (1974), 371-382.
- N. Grønbæk, Amenability of discrete convolution algebras, the commutative case, Pacific. J. Math. 143 (1990), 243-249.
- U. Haagerup, All nuclear C*-algebras are amenable, Invent. Math. 74 (1983), 305-319.
- M. Hamana, On linear topological properties of some C*-algebras, Tôhoku Math. J. 29 (1977), 157-163.
- A. Ya. Helemskii, The Homology of Banach and Topological Algebras, Kluwer, Dordrecht, 1989.
- B. Huppert, Endliche Gruppen I, Springer, Berlin, 1967.
- M. F. Hutchinson, Non-tall compact groups admit infinite Sidon sets, J. Austral. Math. Soc. 23 (1977), 467-475.
- I. M. Isaacs and D. S. Passman, Groups with representations of bounded degree, Canad. J. Math. 16 (1964), 299-309.
- B. E. Johnson, Cohomology in Banach algebras, Mem. Amer. Math. Soc. 127 (1972).
- B. E. Johnson, Non-amenability of the Fourier algebra of a compact group, J. London Math. Soc. (2) 50 (1994), 361-374.
- A. Kaniuth, On the conjugate representation of a locally compact group, Math. Z. 202 (1989), 275-288.
- A. T.-M. Lau, Uniformly continuous functionals on the Fourier algebra of any locally compact group, Trans. Amer. Math. Soc. 251 (1979), 39-59.
- A. T.-M. Lau, The second conjugate algebra of the Fourier algebra of a locally compact group, ibid. 267 (1981), 53-63.
- A. T.-M. Lau and V. Losert, The C*-algebra generated by operators with compact support on a locally compact group, J. Funct. Anal. 112 (1993), 1-30.
- A. T.-M. Lau and R. J. Loy, Amenability of convolution algebras, Math. Scand., to appear.
- A. T.-M. Lau and A. L. T. Paterson, Inner amenable locally compact groups, Trans. Amer. Math. Soc. 325 (1991), 155-169.
- J. R. McMullen and J. F. Price, Rudin-Shapiro sequences for arbitrary compact groups, J. Austral. Math. Soc. 22 (1976), 421-430.
- C. C. Moore, Groups with finite dimensional irreducible representations, Trans. Amer. Math. Soc. 166 (1972), 401-410.
- T. W. Palmer, Classes of non-abelian, non-compact locally compact groups, Rocky Mountain J. Math. 8 (1973), 683-741.
- A. L. T. Paterson, Amenability, Math. Surveys Monographs 29, Amer. Math. Soc., Providence, 1988.
- G. K. Pederson, C*-Algebras and their Automorphism Groups, Academic Press, London, 1979.
- P. F. Renauld, Invariant means on a class of von Neumann algebras, Trans. Amer. Math. Soc. 170 (1972), 285-291.
- R. R. Smith and D. P. Williams, The decomposition property for C*-algebras, J. Operator Theory 16 (1986), 51-74.
- A. Szankowski, B (H) does not have the approximation property, Acta Math. 147 (1981), 89-108.
- M. Takesaki, Theory of Operator Algebras I, Springer, New York, 1979.
- K. Taylor, The type structure of the regular representation of a locally compact group, Math. Ann. 222 (1976), 211-214.
- E. Thoma, Eine Charakterisierung diskreter Gruppen vom typ 1, Invent. Math. 6 (1968), 190-196.
- S. Wassermann, On tensor products of certain group C*-algebras, J. Funct. Anal. 23 (1976), 239-254.
- P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge Univ. Press, Cambridge, 1991.