ArticleOriginal scientific text

Title

On generalized Bergman spaces

Authors 1

Affiliations

  1. Fachbereich 17, Universität-Gesamthochschule, Warburger Straße 100, D-33098 Paderborn, Germany

Abstract

Let D be the open unit disc and μ a positive bounded measure on [0,1]. Extending results of Mateljević/Pavlović and Shields/Williams we give Banach-space descriptions of the classes of all harmonic (holomorphic) functions f: D → ℂ satisfying ʃ01(ʃ02π|f(reiφ)|pdφ)qpdμ(r)<.

Bibliography

  1. S. Axler, Bergman spaces and their operators, in: Survey of Some Recent Results in Operator Theory, B. Conway and B. Morrel (eds.), Pitman Res. Notes, 1988, 1-50.
  2. K. D. Bierstedt and W. H. Summers, Biduals of weighted Banach spaces of analytic functions, J. Austral. Math. Soc. Sec. A 54 (1993), 70-79.
  3. O. Blasco, Multipliers on weighted Besov spaces of analytic functions, in: Contemp. Math. 144, Amer. Math. Soc., 1993, 23-33.
  4. R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in Lp, Astérisque 77 (1980), 12-66.
  5. P. L. Duren, Theory of Hp-Spaces, Academic Press, New York, 1970.
  6. T. M. Flett, The dual of an inequality of Hardy and Littlewood and some related inequalities, J. Math. Anal. Appl. 38 (1972), 746-765.
  7. T. M. Flett, Lipschitz spaces of functions on the circle and the disc, ibid. 39 (1972), 125-158.
  8. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals II, Math. Z. 34 (1932), 403-439.
  9. G. H. Hardy and J. E. Littlewood, Theorems concerning mean values of analytic or harmonic functions, Quart. J. Math. 12 (1941), 221-256.
  10. J. Lindenstrauss and A. Pełczyński, Contributions to the theory of classical Banach spaces, J. Funct. Anal. 8 (1971), 225-249.
  11. W. Lusky, On the structure of Hv0(D) and hv0(D), Math. Nachr. 159 (1992), 279-289.
  12. W. Lusky, On weighted spaces of harmonic and holomorphic functions, J. London Math. Soc. (2) 51 (1995), 309-320.
  13. M. Mateljević and M. Pavlović, Lp-behaviour of the integral means of analytic functions, Studia Math. 77 (1984), 219-237.
  14. L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Austral. Math. Soc. 11 (1970), 276-280.
  15. A. L. Shields and D. L. Williams, Bounded projections, duality and multipliers in spaces of analytic functions, Trans. Amer. Math. Soc. 162 (1971), 287-302.
  16. A. L. Shields and D. L. Williams, Bounded projections, duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 256-279.
  17. A. L. Shields and D. L. Williams, Bounded projections and the growth of harmonic conjugates in the unit disc, Michigan Math. J. 29 (1982), 3-25.
  18. A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986.
  19. P. Wojtaszczyk, Banach Spaces for Analysts, Cambridge University Press, 1991.
  20. P. Wojtaszczyk, On unconditional polynomial bases in Lp and Bergman spaces, Constr. Approx., to appear.
Pages:
77-95
Main language of publication
English
Received
1995-09-28
Accepted
1996-02-16
Published
1996
Exact and natural sciences