ArticleOriginal scientific textA compact set without Markov's property but with an extension operator for
Title
A compact set without Markov's property but with an extension operator for -functions
Authors 1, 2
Affiliations
- Department of Mathematics, Bilkent University, 06533 Ankara, Turkey
- Department of Mathematics, Civil Building Academy, Rostov-na-Donu, Russia
Abstract
We give an example of a compact set K ⊂ [0, 1] such that the space ℇ(K) of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and hence there exists a linear continuous extension operator . At the same time, Markov's inequality is not satisfied for certain polynomials on K.
Bibliography
- A. Aytuna, P. Djakov, A. Goncharov, T. Terzioğlu and V. Zahariuta, Some open problems in the theory of locally convex spaces, in: Linear Topological Spaces and Complex Analysis 1, METU-TÜBİTAK, 1994, 147-165.
- L. P. Bos and P. D. Milman, On Markov and Sobolev type inequalities on compact sets in
, in: Topics in Polynomials of One and Several Variables and Their Applications, Th. M. Rassias, H. M. Srivastava and A. Yanushauskas (eds.), World Sci., 1993, 81-100. - W. Pawłucki and W. Pleśniak, Extension of
functions from sets with polynomial cusps, Studia Math. 88 (1988), 279-287. - W. Pleśniak, Quasianalytic functions in the sense of Bernstein, Dissertationes Math. (Rozprawy Mat.) 147 (1977).
- W. Pleśniak, Markov's inequality and the existence of an extension operator for
functions, J. Approx. Theory 61 (1990), 106-117. - M. Tidten, Fortsetzungen von
-Funktionen, welche auf einer abgeschlossenen Menge in definiert sind, Manuscripta Math. 27 (1979), 291-312. - M. Tidten, Kriterien für die Existenz von Ausdehnungsoperatoren zu ℇ(K) für kompakte Teilmengen K von ℝ, Arch. Math. (Basel) 40 (1983), 73-81.
- A. F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon, Oxford, 1963.
- D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117.
- D. Vogt, Sequence space representations of spaces of test functions and distributions, in: Functional Analysis, Holomorphy and Approximation Theory, G. I. Zapata (ed.), Lecture Notes in Pure and Appl. Math. 83, Dekker, 1983, 405-443.
- V. P. Zahariuta, Some linear topological invariants and isomorphisms of tensor products of scale's centers, Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly 4 (1974), 62-64 (in Russian).
- M. Zerner, Développement en séries de polynômes orthonormaux des fonctions indéfiniment différentiables, C. R. Acad. Sci. Paris 268 (1969), 218-220.