ArticleOriginal scientific text

Title

A compact set without Markov's property but with an extension operator for C-functions

Authors 1, 2

Affiliations

  1. Department of Mathematics, Bilkent University, 06533 Ankara, Turkey
  2. Department of Mathematics, Civil Building Academy, Rostov-na-Donu, Russia

Abstract

We give an example of a compact set K ⊂ [0, 1] such that the space ℇ(K) of Whitney functions is isomorphic to the space s of rapidly decreasing sequences, and hence there exists a linear continuous extension operator L:(K)C[0,1]. At the same time, Markov's inequality is not satisfied for certain polynomials on K.

Bibliography

  1. A. Aytuna, P. Djakov, A. Goncharov, T. Terzioğlu and V. Zahariuta, Some open problems in the theory of locally convex spaces, in: Linear Topological Spaces and Complex Analysis 1, METU-TÜBİTAK, 1994, 147-165.
  2. L. P. Bos and P. D. Milman, On Markov and Sobolev type inequalities on compact sets in n, in: Topics in Polynomials of One and Several Variables and Their Applications, Th. M. Rassias, H. M. Srivastava and A. Yanushauskas (eds.), World Sci., 1993, 81-100.
  3. W. Pawłucki and W. Pleśniak, Extension of C functions from sets with polynomial cusps, Studia Math. 88 (1988), 279-287.
  4. W. Pleśniak, Quasianalytic functions in the sense of Bernstein, Dissertationes Math. (Rozprawy Mat.) 147 (1977).
  5. W. Pleśniak, Markov's inequality and the existence of an extension operator for C functions, J. Approx. Theory 61 (1990), 106-117.
  6. M. Tidten, Fortsetzungen von C-Funktionen, welche auf einer abgeschlossenen Menge in n definiert sind, Manuscripta Math. 27 (1979), 291-312.
  7. M. Tidten, Kriterien für die Existenz von Ausdehnungsoperatoren zu ℇ(K) für kompakte Teilmengen K von ℝ, Arch. Math. (Basel) 40 (1983), 73-81.
  8. A. F. Timan, Theory of Approximation of Functions of a Real Variable, Pergamon, Oxford, 1963.
  9. D. Vogt, Charakterisierung der Unterräume von s, Math. Z. 155 (1977), 109-117.
  10. D. Vogt, Sequence space representations of spaces of test functions and distributions, in: Functional Analysis, Holomorphy and Approximation Theory, G. I. Zapata (ed.), Lecture Notes in Pure and Appl. Math. 83, Dekker, 1983, 405-443.
  11. V. P. Zahariuta, Some linear topological invariants and isomorphisms of tensor products of scale's centers, Izv. Severo-Kavkaz. Nauchn. Tsentra Vyssh. Shkoly 4 (1974), 62-64 (in Russian).
  12. M. Zerner, Développement en séries de polynômes orthonormaux des fonctions indéfiniment différentiables, C. R. Acad. Sci. Paris 268 (1969), 218-220.
Pages:
27-35
Main language of publication
English
Received
1995-05-10
Accepted
1996-02-20
Published
1996
Exact and natural sciences