ArticleOriginal scientific text

Title

On the type constants with respect to systems of characters of a compact abelian group

Authors 1

Affiliations

  1. FSU Jena, Mathematisches Institut, 07740 Jena, Germany

Abstract

We prove that there exists an absolute constant c such that for any positive integer n and any system Φ of 2n characters of a compact abelian group, 2-n2tΦ(T)cn-12tn(T), where T is an arbitrary operator between Banach spaces, tΦ(T) is the type norm of T with respect to Φ and tn(T) is the usual Rademacher type-2 norm computed with n vectors. For the system of the first 2n Walsh functions this is even true with c=1. This result combined with known properties of such type norms provides easy access to quantitative versions of the fact that a nontrivial type of a Banach space implies finite cotype and nontrivial type with respect to the Walsh system or the trigonometric system.

Bibliography

  1. B. Beauzamy, Introduction to Banach Spaces and their Geometry, Notas di Mat. 68, North-Holland, Amsterdam, 1982.
  2. J. Bourgain, On trigonometric series in superreflexive spaces, J. London Math. Soc. (2) 24 (1981), 165-174.
  3. J. Bourgain, A Hausdorff-Young inequality for B-convex Banach spaces, Pacific J. Math. 101 (1982), 255-262.
  4. J. Bourgain, Subspaces of LN, arithmetical diameter and Sidon sets, in: Probability in Banach Spaces V, Proceedings, Medford 1984, Lecture Notes in Math. 1153, Springer, Berlin, 1986, 96-127.
  5. J. Diestel, H. Jarchow and A. Tonge, Absolutely summing operators, Cambridge Stud. Adv. Math. 43, Cambridge Univ. Press, 1995.
  6. H. König and L. Tzafriri, Some estimates for type and cotype constants, Math. Ann. 256 (1981), 85-94.
  7. J. L. Krivine, Sous-espaces de dimension finie des espaces de Banach réticulés, Ann. of Math. 104 (1976), 1-29.
  8. V. Mascioni, On weak cotype and weak type in Banach spaces, Note Mat. 8 (1988), 67-110.
  9. B. Maurey et G. Pisier, Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach, Studia Math. 58 (1976), 45-90.
  10. V. D. Milman and G. Schechtman, Asymptotic Theory of Finite Dimensional Normed Spaces, Lecture Notes in Math. 1200, Springer, Berlin, 1986.
  11. A. Pietsch, Gradations of the Hilbertian operator norm and geometry of Banach spaces, Forschungsergebnisse Univ. Jena N/89/6.
  12. A. Pietsch, Sequences of ideal norms, Note Mat. 10 (1990), 411-441.
  13. A. Pietsch and J. Wenzel, Orthonormal systems and Banach space geometry, in preparation.
  14. G. Pisier, Sur les espaces de Banach qui ne contiennent pas uniformément de l1n, C. R. Acad. Sci. Paris Sér. A 277 (1973), 991-994.
  15. G. Pisier, Les inégalités de Kahane-Khintchin d'après C. Borell, Séminaire sur la Géometrie des Espaces de Banach (1977-1978), Exposé No. VII, École Polytechnique, Palaiseau.
  16. G. Pisier, Factorization of Linear Operators and Geometry of Banach Spaces, CBMS Regional Conf. Ser. in Math. 60, Amer. Math. Soc., Providence, 1986.
  17. G. Pisier, Sur les espaces de Banach de dimension finie à distance extrémale d'un espace euclidien, d'après V. D. Milman et H. Wolfson, Séminaire d'Analyse Fonctionnelle (1978-1979), Exposé No. XVI, École Polytechnique, Palaiseau.
  18. N. Tomczak-Jaegermann, Banach-Mazur Distances and Finite-Dimensional Operator Ideals, Longman, 1988.
Pages:
231-243
Main language of publication
English
Received
1995-07-24
Accepted
1995-11-09
Published
1996
Exact and natural sciences