ArticleOriginal scientific text
Title
Two-parameter Hardy-Littlewood inequalities
Authors 1
Affiliations
- Department of Numerical Analysis, Eötvös L. University, Múzeum krt. 6-8, H-1088 Budapest, Hungary
Abstract
The inequality
(*) (0 < p ≤ 2)
is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional classical Hardy space on the bidisc. The inequality (*) is extended to each p if the Fourier coefficients are monotone. For monotone coefficients and for every p, the supremum of the partial sums of the Fourier series is in whenever the left hand side of (*) is finite. From this it follows that under the same condition the two-dimensional trigonometric-Fourier series of an arbitrary function from converges a.e. and also in norm to that function.
Keywords
Hardy spaces, rectangle p-atom, atomic decomposition, Hardy-Littlewood inequalities
Bibliography
- S. -Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and
-theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43. - R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
- M. I. D'jachenko [M. I. D'yachenko], Multiple trigonometric series with lexicographically monotone coefficients, Anal. Math. 16 (1990), 173-190.
- M. I. D'jachenko [M. I. D'yachenko], On the convergence of double trigonometric series and Fourier series with monotone coefficients, Math. USSR-Sb. 57 (1987), 57-75.
- R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer, Berlin, 1982.
- C. Fefferman and E. M. Stein,
spaces of several variables, Acta Math. 129 (1972), 137-194. - C. Fefferman and E. M. Stein, Calderón-Zygmund theory for product domains:
spaces, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 840-843. - R. F. Gundy, Inégalités pour martingales à un et deux indices: L'espace
, in: Ecole d'Eté de Probabilités de Saint-Flour VIII-1978, Lecture Notes in Math. 774, Springer, Berlin, 1980, 251-331. - R. F. Gundy, Maximal function characterization of
for the bidisc, in: Lecture Notes in Math. 781, Springer, Berlin, 1982, 51-58. - R. F. Gundy and E. M. Stein,
theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), 1026-1029. - G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 3-9.
- B. Jawerth and A. Torchinsky, A note on real interpolation of Hardy spaces in the polydisk, Proc. Amer. Math. Soc. 96 (1986), 227-232.
- K.-C. Lin, Interpolation between Hardy spaces on the bidisc, Studia Math. 84 (1986), 89-96.
- F. Móricz, On double cosine, sine and Walsh series with monotone coefficients, Proc. Amer. Math. Soc. 109 (1990), 417-425.
- F. Móricz, On the maximum of the rectangular partial sums of double trigonometric series with non-negative coefficients, Anal. Math. 15 (1989), 283-290.
- A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986.
- F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233.
- F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
- F. Weisz, Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series, Studia Math. 117 (1996), 173-194.
- A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959.