ArticleOriginal scientific text

Title

Two-parameter Hardy-Littlewood inequalities

Authors 1

Affiliations

  1. Department of Numerical Analysis, Eötvös L. University, Múzeum krt. 6-8, H-1088 Budapest, Hungary

Abstract

The inequality (*) (|n|=1|m|=1|nm|p-2|f̂(n,m)|p)1pCpƒHp (0 < p ≤ 2) is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional classical Hardy space Hp on the bidisc. The inequality (*) is extended to each p if the Fourier coefficients are monotone. For monotone coefficients and for every p, the supremum of the partial sums of the Fourier series is in Lp whenever the left hand side of (*) is finite. From this it follows that under the same condition the two-dimensional trigonometric-Fourier series of an arbitrary function from H1 converges a.e. and also in L1 norm to that function.

Keywords

Hardy spaces, rectangle p-atom, atomic decomposition, Hardy-Littlewood inequalities

Bibliography

  1. S. -Y. A. Chang and R. Fefferman, Some recent developments in Fourier analysis and Hp-theory on product domains, Bull. Amer. Math. Soc. 12 (1985), 1-43.
  2. R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
  3. M. I. D'jachenko [M. I. D'yachenko], Multiple trigonometric series with lexicographically monotone coefficients, Anal. Math. 16 (1990), 173-190.
  4. M. I. D'jachenko [M. I. D'yachenko], On the convergence of double trigonometric series and Fourier series with monotone coefficients, Math. USSR-Sb. 57 (1987), 57-75.
  5. R. E. Edwards, Fourier Series. A Modern Introduction, Vol. 2, Springer, Berlin, 1982.
  6. C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-194.
  7. C. Fefferman and E. M. Stein, Calderón-Zygmund theory for product domains: Hp spaces, Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 840-843.
  8. R. F. Gundy, Inégalités pour martingales à un et deux indices: L'espace Hp, in: Ecole d'Eté de Probabilités de Saint-Flour VIII-1978, Lecture Notes in Math. 774, Springer, Berlin, 1980, 251-331.
  9. R. F. Gundy, Maximal function characterization of Hp for the bidisc, in: Lecture Notes in Math. 781, Springer, Berlin, 1982, 51-58.
  10. R. F. Gundy and E. M. Stein, Hp theory for the poly-disc, Proc. Nat. Acad. Sci. U.S.A. 76 (1979), 1026-1029.
  11. G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 3-9.
  12. B. Jawerth and A. Torchinsky, A note on real interpolation of Hardy spaces in the polydisk, Proc. Amer. Math. Soc. 96 (1986), 227-232.
  13. K.-C. Lin, Interpolation between Hardy spaces on the bidisc, Studia Math. 84 (1986), 89-96.
  14. F. Móricz, On double cosine, sine and Walsh series with monotone coefficients, Proc. Amer. Math. Soc. 109 (1990), 417-425.
  15. F. Móricz, On the maximum of the rectangular partial sums of double trigonometric series with non-negative coefficients, Anal. Math. 15 (1989), 283-290.
  16. A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986.
  17. F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233.
  18. F. Weisz, Martingale Hardy Spaces and Their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
  19. F. Weisz, Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series, Studia Math. 117 (1996), 173-194.
  20. A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959.
Pages:
175-184
Main language of publication
English
Received
1995-10-05
Published
1996
Exact and natural sciences