PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Czasopismo
1996 | 118 | 1 | 63-75
Tytuł artykułu

Topologies of compact families on the ideal space of a Banach algebra

Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Let 𝐾 be a family of compact sets in a Banach algebra A such that 𝐾 is stable with respect to finite unions and contains all finite sets. Then the sets $U(K) := {I ∈ Id(A): I ∩ K = ∅}$, K ∈ 𝐾 define a topology τ(𝐾) on the space Id(A) of closed two-sided ideals of A. 𝐾 is called normal if $I_i → I$ in (Id(A),τ(𝐾)) and x ∈ A╲I imply $lim inf_i∥x + I_i∥ > 0$. (1) If the family of finite subsets of A is normal then Id(A) is locally compact in the hull kernel topology and if moreover A is separable then Id(A) is second countable. (2) If the family of countable compact sets is normal and A is separable then there is a countable subset S ⊂ A such that for all closed two-sided ideals I we have $\overline{I ∩ S} = I$. Examples are separable C*-algebras, the convolution algebras $L^p(G)$ where 1 ≤ p < ∞ and G is a metrizable compact group, and others; but not all separable Banach algebras share this property.
Słowa kluczowe
Kategorie tematyczne
Czasopismo
Rocznik
Tom
118
Numer
1
Strony
63-75
Opis fizyczny
Daty
wydano
1996
otrzymano
1995-06-05
poprawiono
1995-09-18
Twórcy
Bibliografia
  • [1] R. J. Archbold, Topologies for primal ideals, J. London Math. Soc. (2) 36 (1987), 524-542
  • [2] F. Beckhoff, Topologies on the space of ideals of a Banach algebra, Studia Math. 115 (1995), 189-205.
  • [3] B. Blackadar, Weak expectations and nuclear C*-algebras, Indiana Univ. Math. J. 27 (1978), 1021-1026
  • [4] E. Hewitt and K. A. Ross, Abstract Harmonic Analysis II, Springer, 1970.
  • [5] J. L. Kelley, General Topology, Springer, 1955.
  • [6] D. W. B. Somerset, Minimal primal ideals in Banach algebras, Math. Proc. Cambridge Philos. Soc. 115 (1994), 39-52.
Typ dokumentu
Bibliografia
Identyfikatory
Identyfikator YADDA
bwmeta1.element.bwnjournal-article-smv118i1p63bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.