ArticleOriginal scientific text
Title
Topological type of weakly closed subgroups in Banach spaces
Authors 1, 2, 3
Affiliations
- Department of Mathematics, Pittsburg State University, Pittsburg, Kansas 66762, U.S.A.
- Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland
- Institute of Mathematics, University of Tsukuba, Tsukuba-Shi, Ibaraki, 305, Japan
Abstract
The main result says that nondiscrete, weakly closed, containing no nontrivial linear subspaces, additive subgroups in separable reflexive Banach spaces are homeomorphic to the complete Erdős space. Two examples of such subgroups in which are interesting from the Banach space theory point of view are discussed.
Keywords
additive subgroup of linear space, weakly closed, topological dimension, complete Erdős space, Lelek fan
Bibliography
- [ADG] F. D. Ancel, T. Dobrowolski and J. Grabowski, Closed subgroups in Banach spaces, Studia Math. 109 (1994), 277-290.
- [BP] C. Bessaga and A. Pełczyński, Selected Topics in Infinite-Dimensional Topology, PWN, Warszawa 1975.
- [BO] W. T. Bula and L. G. Oversteegen, A characterization of smooth Cantor bouquets, Proc. Amer. Math. Soc. 108 (1990), 529-534.
- [Ch] W. J. Charatonik, The Lelek fan is unique, Houston J. Math. 15 (1989), 27-34.
- [D] T. Dobrowolski, Examples of topological groups homeomorphic to
, Proc. Amer. Math. Soc. 98 (1986), 303-311. - [Da] M. M. Day Normed Linear Spaces, 3rd ed., Springer, Berlin, 1973.
- [DG] T. Dobrowolski and J. Grabowski, Subgroups of Hilbert spaces, Math. Z. 211 (1992), 657-669.
- [E] R. Engelking, Dimension Theory, PWN, Warszawa, and North-Holland, Amsterdam, 1978.
- [KOT] K. Kawamura, L. G. Oversteegen and E. D. Tymchatyn, On homogeneous totally disconnected 1-dimensional spaces, Fund. Math., to appear.
- [Le] A. Lelek, On plane dendroids and their endpoints in the classical sense, Fund. Math. 49 (1961), 301-319.
- [Sie] W. Sierpiński, Sur la valeur asymptotique d'une certaine somme, Bull. Acad. Sci. Cracovie Math. Ser. A (1910), 11.