ArticleOriginal scientific text
Title
Duality on vector-valued weighted harmonic Bergman spaces
Authors 1
Affiliations
- Instituto de Matemáticas, Universidad Nacional Autónoma de México, México 04510 D.F., México
Abstract
We study the duals of the spaces of harmonic functions in the unit ball of with values in a Banach space X, belonging to the Bochner space with weight , denoted by . For 0 < α < p-1 we construct continuous projections onto providing a decomposition . We discuss the conditions on p, α and X for which and , 1/p+1/q = 1. The last equality is equivalent to the Radon-Nikodým property of X*.
Bibliography
- S. Bell, A duality theorem for harmonic functions, Michigan Math. J. 29 (1982), 123-128.
- C. V. Coffman and J. Cohen, The duals of harmonic Bergman spaces, Proc. Amer. Math. Soc. 110 (1990), 697-704.
- R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in
, Astérisque 77 (1980), 11-66. - J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
- N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
- J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Notas Mat. 116, North-Holland, Amsterdam, 1985.
- E. Ligocka, The Hölder duality for harmonic functions, Studia Math. 84 (1986), 269-277.
- E. Ligocka, Estimates in Sobolev norms
for harmonic and holomorphic functions and interpolation between Sobolev and Hölder spaces of harmonic functions, Studia Math. 86 (1987), 255-271. - E. Ligocka, On the reproducing kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball in
, ibid. 87 (1987), 23-32. - C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, New York, 1966.
- E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971.