ArticleOriginal scientific text

Title

Duality on vector-valued weighted harmonic Bergman spaces

Authors 1

Affiliations

  1. Instituto de Matemáticas, Universidad Nacional Autónoma de México, México 04510 D.F., México

Abstract

We study the duals of the spaces Apα(X) of harmonic functions in the unit ball of n with values in a Banach space X, belonging to the Bochner Lp space with weight (1-|x|)α, denoted by Lpα(X). For 0 < α < p-1 we construct continuous projections onto Apα(X) providing a decomposition Lpα(X)=Apα(X)+Mpα(X). We discuss the conditions on p, α and X for which Apα(X)=Aqα(X) and Mpα(X)=Mqα(X), 1/p+1/q = 1. The last equality is equivalent to the Radon-Nikodým property of X*.

Bibliography

  1. S. Bell, A duality theorem for harmonic functions, Michigan Math. J. 29 (1982), 123-128.
  2. C. V. Coffman and J. Cohen, The duals of harmonic Bergman spaces, Proc. Amer. Math. Soc. 110 (1990), 697-704.
  3. R. R. Coifman and R. Rochberg, Representation theorems for holomorphic and harmonic functions in Lp, Astérisque 77 (1980), 11-66.
  4. J. Diestel and J. J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., Providence, R.I., 1977.
  5. N. Dinculeanu, Vector Measures, Pergamon Press, New York, 1967.
  6. J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Notas Mat. 116, North-Holland, Amsterdam, 1985.
  7. E. Ligocka, The Hölder duality for harmonic functions, Studia Math. 84 (1986), 269-277.
  8. E. Ligocka, Estimates in Sobolev norms ·ps for harmonic and holomorphic functions and interpolation between Sobolev and Hölder spaces of harmonic functions, Studia Math. 86 (1987), 255-271.
  9. E. Ligocka, On the reproducing kernel for harmonic functions and the space of Bloch harmonic functions on the unit ball in Rn, ibid. 87 (1987), 23-32.
  10. C. B. Morrey, Multiple Integrals in the Calculus of Variations, Springer, New York, 1966.
  11. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press, 1971.
Pages:
37-47
Main language of publication
English
Received
1995-01-24
Accepted
1995-08-28
Published
1996
Exact and natural sciences