ArticleOriginal scientific text

Title

Toeplitz flows with pure point spectrum

Authors 1

Affiliations

  1. Institute of Mathematics, Technical University of Wrocław, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland

Abstract

We construct strictly ergodic 0-1 Toeplitz flows with pure point spectrum and irrational eigenvalues. It is also shown that the property of being regular is not a measure-theoretic invariant for strictly ergodic Toeplitz flows.

Keywords

Toeplitz sequence, Sturmian sequence, group extension, pure point spectrum

Bibliography

  1. [B-K] W. Bułatek and J. Kwiatkowski, Strictly ergodic Toeplitz flows with positive entropies and trivial centralizers, Studia Math. 103 (1992), 133-142.
  2. [D] T. Downarowicz, The Choquet simplex of invariant measures for minimal flows, Israel J. Math. 74 (1991), 241-256.
  3. [D-I] T. Downarowicz and A. Iwanik, Quasi-uniform convergence in compact dynamical systems, Studia Math. 89 (1988), 11-25.
  4. [D-K-L] T. Downarowicz, J. Kwiatkowski and Y. Lacroix, A criterion for Toeplitz flows to be topologically isomorphic and applications, Colloq. Math. 68 (1995), 219-228.
  5. [G] C. Grillenberger, Zwei kombinatorische Konstruktionen für strikt ergodische Folgen, thesis, Univ. Erlangen-Nürnberg, 1970.
  6. [H] G. A. Hedlund, Sturmian minimal sets, Amer. J. Math. 66 (1944), 605-620.
  7. [I-L] A. Iwanik and Y. Lacroix, Some constructions of strictly ergodic non-regular Toeplitz flows, Studia Math. 110 (1994), 191-203.
  8. [J-K] K. Jacobs and M. Keane, 0-1 sequences of Toeplitz type, Z. Wahrsch. Verw. Gebiete 13 (1969), 123-131.
  9. [W] S. Williams, Toeplitz minimal flows which are not uniquely ergodic, ibid. 67 (1984), 95-107.
Pages:
27-35
Main language of publication
English
Received
1994-10-28
Accepted
1995-11-16
Published
1996
Exact and natural sciences