Download PDF - C*-seminorms
ArticleOriginal scientific text
Title
C*-seminorms
Authors 1
Affiliations
- Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802, U.S.A.
Abstract
A necessary and sufficient condition is given for a*-algebra with identity to have a unique maximal C*-seminorm. This generalizes the result, due to Bonsall, that a Banach *-algebra with identity has such a*-seminorm.
Bibliography
- F. F. Bonsall, A survey of Banach algebra theory, Bull. London Math. Soc. 2 (1970), 257-274.
- F. F. Bonsall and J. Duncan, Complete Normed Algebras, Springer, 1973.
- I. Gelfand and M. Naimark, Rings with involution and their representations, Izv. Akad. Nauk SSSR Ser. Mat. 12 (1948), 445-480 (in Russian).
- I. Kaplansky, Topological algebras, Dept. of Math., Univ. of Chicago, 1952 (mimeographed notes).
- I. Kaplansky, Topological Algebras, Notas Mat. 16, Rio de Janeiro, 1959.
- M. Naimark, Normed Rings, Noordhoff, Groningen, 1960.
- V. Pták, Banach algebras with involution, Manuscripta Math. 6 (1972), 245-290.
- C. E. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960.
- B. Yood, Homomorphisms on normed algebras, Pacific J. Math. 8 (1958), 373-381.
- B. Yood, Faithful *-representations of normed algebras, ibid. 10 (1960), 345-363.