ArticleOriginal scientific text
Title
RNP and KMP are equivalent for some Banach spaces with shrinking basis
Authors 1, 1
Affiliations
- Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
Abstract
We get a characterization of PCP in Banach spaces with shrinking basis. Also, we prove that the Radon-Nikodym and Krein-Milman properties are equivalent for closed, convex and bounded subsets of some Banach spaces with shrinking basis.
Bibliography
- S. Argyros, E. Odell and H. Rosenthal, On certain convex subsets of
, in: Lecture Notes in Math. 1332, Springer, Berlin, 1988, 80-111. - J. Bourgain, La propriété de Radon-Nikodym, Publ. Math. Univ. Pierre et Marie Curie 36, 1979.
- J. Bourgain and H. Rosenthal, Geometrical implications of certain finite-dimensional decompositions, Bull. Soc. Math. Belg. Sér. B 32 (1980), 57-82.
- R. D. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Lecture Notes in Math. 993, Springer, 1980.
- J. Diestel and J. J. Uhl., Jr., Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
- D. van Dulst, Reflexive and Superreflexive Banach Spaces, Math. Centre Tracts 102, Math. Centrum, Amsterdam, 1978.
- D. van Dulst, Characterizations of Banach Spaces not Containing
, CWI Tract 59, Stichting Math. Centrum, Amsterdam, 1989. - R. C. James, Some interesting Banach spaces, Rocky Mountain J. Math. 23 (1993), 911-937.
- J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain
and whose duals are non-separable, Studia Math. 54 (1975), 81-105. - J. Lindenstrauss and L. Tzafriri, Classical Banach Spaces I, Ergeb. Math. Grenzgeb. 92, Springer, 1977.
- R. R. Phelps, Dentability and extreme points in Banach spaces, J. Funct. Anal. 17 (1974), 78-90.
- W. Schachermayer, The Radon-Nikodym property and the Krein-Milman property are equivalent for strongly regular sets, Trans. Amer. Math. Soc. 303 (1987), 673-687.