ArticleOriginal scientific text

Title

On subspaces of Banach spaces where every functional has a unique norm-preserving extension

Authors 1, 2

Affiliations

  1. Institute of Pure Mathematics, Tartu University, Vanemuise 46, EE-2400 Tartu, Estonia
  2. nstitute of Pure Mathematics, Tartu University, Vanemuise 46, EE-2400 Tartu, Estonia

Abstract

Let X be a Banach space and Y a closed subspace. We obtain simple geometric characterizations of Phelps' property U for Y in X (that every continuous linear functional g ∈ Y* has a unique norm-preserving extension f ∈ X*), which do not use the dual space X*. This enables us to give an intrinsic geometric characterization of preduals of strictly convex spaces close to the Beauzamy-Maurey-Lima-Uttersrud criterion of smoothness. This also enables us to prove that the U-property of the subspace K(E,F) of compact operators from a Banach space E to a Banach space F in the corresponding space L(E,F) of all operators implies the U-property for F in F** whenever F is isomorphic to a quotient space of E.

Bibliography

  1. T. Andô, On some properties of convex functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 8 (1960), 413-418.
  2. B. Beauzamy, Introduction to Banach Spaces and Their Geometry, North-Holland Math. Stud. 68, North-Holland, Amsterdam, 1982.
  3. B. Beauzamy et B. Maurey, Points minimaux et ensembles optimaux dans les espaces de Banach, J. Funct. Anal. 24 (1977), 107-139.
  4. P. K. Belobrov, Minimal extension of linear functionals to second dual spaces, Mat. Zametki 27 (1980), 439-445 (in Russian).
  5. P. G. Casazza and N. J. Kalton, Notes on approximation properties in separable Banach spaces, in: Geometry of Banach Spaces, Proc. Conf. Strobl 1989, P. F. X. Müller and W. Schachermayer (eds.), London Math. Soc. Lecture Note Ser. 158, Cambridge Univ. Press, 1990, 49-63.
  6. S. R. Foguel, On a theorem by A. E. Taylor, Proc. Amer. Math. Soc. 9 (1958), 325.
  7. G. Godefroy, Points de Namioka, espaces normants, applications à la théorie isométrique de la dualité, Israel J. Math. 38 (1981), 209-220.
  8. G. Godefroy, N. J. Kalton et P. D. Saphar, Idéaux inconditionnels dans les espaces de Banach, C. R. Acad. Sci. Paris Sér. I 313 (1991), 845-849.
  9. G. Godefroy, N. J. Kalton et P. D. Saphar, Unconditional ideals in Banach spaces, Studia Math. 104 (1993), 13-59.
  10. P. Harmand, D. Werner, and W. Werner, M-Ideals in Banach Spaces and Banach Algebras, Lecture Notes in Math. 1547, Springer, Berlin, 1993.
  11. J. Hennefeld, M-ideals, HB-subspaces, and compact operators, Indiana Univ. Math. J. 28 (1979), 927-934.
  12. J. Johnson, Remarks on Banach spaces of compact operators, J. Funct. Anal. 32 (1979), 304-311.
  13. Å. Lima, Intersection properties of balls and subspaces in Banach spaces, Trans. Amer. Math. Soc. 227 (1977), 1-62.
  14. Å. Lima, M-ideals of compact operators in classical Banach spaces, Math. Scand. 44 (1979), 207-217.
  15. Å. Lima, Uniqueness of Hahn-Banach extensions and liftings of linear dependences, ibid. 53 (1983), 97-113.
  16. Å. Lima, E. Oja, T. S. S. R. K. Rao, and D. Werner, Geometry of operator spaces, Michigan Math. J. 41 (1994), 473-490.
  17. Å. Lima and U. Uttersrud, Centers of symmetry in finite intersections of balls in Banach spaces, Israel J. Math. 44 (1983), 189-200.
  18. E. Oja, On the uniqueness of the norm preserving extension of a linear functional in the Hahn-Banach theorem, Izv. Akad. Nauk Est. SSR Ser. Fiz. Mat. 33 (1984), 424-438 (in Russian).
  19. E. Oja, Strong uniqueness of the extension of linear continuous functionals according to the Hahn-Banach theorem, Mat. Zametki 43 (1988), 237-246 (in Russian); English transl.: Math. Notes 43 (1988), 134-139.
  20. E. Oja, Dual de l'espace des opérateurs linéaires continus, C. R. Acad. Sci. Paris Sér. I 309 (1989), 983-986.
  21. E. Oja, HB-subspaces and Godun sets of subspaces in Banach spaces, preprint, 1995.
  22. R. R. Phelps, Uniqueness of Hahn-Banach extensions and unique best approximation, Trans. Amer. Math. Soc. 95 (1960), 238-255.
  23. M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Dekker, New York, 1991.
  24. I. Singer, Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces, Grundlehren Math. Wiss. 171, Springer, Berlin, 1970.
  25. M. A. Smith and F. Sullivan, Extremely smooth Banach spaces, in: Banach Spaces of Analytic Functions, Proc. Conf. Kent, Ohio, 1976, J. Baker, C. Cleaver, and J. Diestel (eds.), Lecture Notes in Math. 604, Springer, Berlin, 1977, 125-137.
  26. F. Sullivan, Geometrical properties determined by the higher duals of a Banach space, Illinois J. Math. 21 (1977), 315-331.
  27. A. E. Taylor, The extension of linear functionals, Duke Math. J. 5 (1939), 538-547.
  28. S. L. Troyanski, An example of a smooth space whose dual is not strictly normed, Studia Math. 35 (1970), 305-309 (in Russian).
  29. L. P. Vlasov, Approximative properties of sets in normed linear spaces, Uspekhi Mat. Nauk 28 (6) (1973), 3-66 (in Russian).
  30. D. Werner, M-ideals and the "basic inequality", J. Approx. Theory 76 (1994), 21-30.
Pages:
289-306
Main language of publication
English
Received
1995-07-12
Accepted
1995-09-11
Published
1996
Exact and natural sciences