ArticleOriginal scientific text

Title

Régularité Besov des trajectoires du processus intégral de Skorokhod

Authors 1

Affiliations

  1. Institut Elie Cartan, Département de Mathématiques, Université de Nancy I, BP 239, 54506 Vandœuvre-lès-Nancy, Cedex, France

Abstract

Let {Wt:0t1} be a linear Brownian motion, starting from 0, defined on the canonical probability space (Ω,ℱ,P). Consider a process {ut:0t1} belonging to the space 2,1 (see Definition II.2). The Skorokhod integral Ut=ʃ0tuδW is then well defined, for every t ∈ [0,1]. In this paper, we study the Besov regularity of the Skorokhod integral process tUt. More precisely, we prove the following THEOREM III.1. (1)} If 0 < α < 1/2 and up,1 with 1/α < p < ∞, then a.s. tUtp,qα for all q ∈ [1,∞], and tUtp,α,0. (2)} For every even integer p ≥ 4, if there exists δ > 2(p+1) such that uδ,2([0,1]×Ω), then a.s. tUtp,12. (For the definition of the Besov spaces p,qα and p,α,0, see Section I; for the definition of the spaces p,1 and p,2,p2, see Definition II.2.) An analogous result for the classical Itô integral process has been obtained by B. Roynette in [R]. Let us finally observe that D. Nualart and E. Pardoux [NP] showed that the Skorokhod integral process tUt admits an a.s. continuous modification, under smoothness conditions on the integrand similar to those stated in Theorem II.1 (cf. Theorems 5.2 and 5.3 of [NP]).

Bibliography

  1. [BI] M. T. Barlow and P. Imkeller, On some sample path properties of Skorokhod integral processes, in: Séminaire de Probabilités, XXVI, Lecture Notes in Math. 1526, Springer, Berlin, 1992, 1992, 70-80.
  2. [BL] J. Bergh and J. Löfström, Interpolation Spaces: An Introduction, Springer, Berlin, 1976.
  3. [B] R. Buckdahn, Quasilinear partial stochastic differential equations without non-anticipation requirement, preprint 176, Humboldt-Universität Berlin, 1988.
  4. [C] Z. Ciesielski, On the isomorphisms of the spaces Hα and m, Bull. Acad. Polon. Sci. 8 (1960), 217-222.
  5. [CKR] Z. Ciesielski, G. Kerkyacharian et B. Roynette, Quelques espaces fonctionnels associés à des processus gaussiens, Studia Math. 107 (1993), 171-204.
  6. [GT] B. Gaveau et P. Trauber, L'intégrale stochastique comme opérateur de divergence dans l'espace fonctionnel, J. Funct. Anal. 46 (1982), 230-238.
  7. [I1] P. Imkeller, Regularity of Skorohod integral based on integrands in a finite Wiener chaos, Probab. Theory Related Fields 98 (1994), 137-142.
  8. [I2] P. Imkeller, Occupation densities for stochastic integral processes in the second Wiener chaos, ibid. 91 (1992), 1-24.
  9. [NP] D. Nualart and E. Pardoux, Stochastic calculus with anticipating integrands, ibid. 78 (1988), 535-581.
  10. [NZ] D. Nualart and M. Zakai, Generalized stochastic integrals and the Malliavin calculus, ibid. 73 (1986), 255-280.
  11. [PP] E. Pardoux and Ph. Protter, A two-sided stochastic integral and its calculus, ibid. 76 (1987), 15-49.
  12. [P] J. Peetre, New Thoughts on Besov Spaces, Duke Univ. Math. Ser. I, 1976.
  13. [R] B. Roynette, Mouvement Brownien et espaces de Besov, Stochastics Stochastics Rep. 43 (1993), 221-260.
  14. [S] A. V. Skorokhod, On a generalization of a stochastic integral, Theory Probab. Appl. 20 (1975), 219-233.
  15. [W] S. Watanabe, Lectures on Stochastic Differential Equations and Malliavin Calculus, Tata Institute of Fundamental Research, Springer, Berlin, 1984.
Pages:
205-223
Main language of publication
French
Received
1995-03-09
Accepted
1995-08-29
Published
1996
Exact and natural sciences