ArticleOriginal scientific text

Title

Strong convergence theorems for two-parameter Walsh-Fourier and trigonometric-Fourier series

Authors 1

Affiliations

  1. Department of Numerical Analysis, Eötvös L. University, Múzeum krt. 6-8, H-1088 Budapest, Hungary

Abstract

The martingale Hardy space Hp([0,1)2) and the classical Hardy space Hp(^2) are introduced. We prove that certain means of the partial sums of the two-parameter Walsh-Fourier and trigonometric-Fourier series are uniformly bounded operators from Hp to Lp (0 < p ≤ 1). As a consequence we obtain strong convergence theorems for the partial sums. The classical Hardy-Littlewood inequality is extended to two-parameter Walsh-Fourier and trigonometric-Fourier coefficients. The dual inequalities are also verified and a Marcinkiewicz-Zygmund type inequality is obtained for BMO spaces.

Keywords

martingale and classical Hardy spaces, p-atom, atomic decomposition, Walsh functions, Hardy-Littlewood inequality

Bibliography

  1. D. L. Burkholder, R. F. Gundy and M. L. Silverstein, A maximal function characterization of the class Hp, Trans. Amer. Math. Soc. 157 (1971), 137-153.
  2. R. R. Coifman, A real variable characterization of Hp, Studia Math. 51 (1974), 269-274.
  3. R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc. 83 (1977), 569-645.
  4. R. E. Edwards, Fourier Series, A Modern Introduction, Vol. 1, Springer, Berlin, 1982.
  5. R. E. Edwards, Fourier Series, A Modern Introduction, Vol. 2, Springer, Berlin, 1982.
  6. C. Fefferman, N. M. Rivière, and Y. Sagher, Interpolation between Hp spaces: the real method, Trans. Amer. Math. Soc. 191, (1974), 75-81.
  7. C. Fefferman and E. M. Stein, Hp spaces of several variables, Acta Math. 129 (1972), 137-194.
  8. N. J. Fine, On the Walsh functions, Trans. Amer. Math. Soc. 65 (1949), 372-414.
  9. J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, Math. Stud. 116, North-Holland, Amsterdam, 1985.
  10. A. M. Garsia, Martingale Inequalities, Seminar Notes on Recent Progress, Math. Lecture Notes Ser., Benjamin, New York, 1973.
  11. G. Gát, Investigations of certain operators with respect to the Vilenkin system, Acta Math. Hungar. 61 (1993), 131-149.
  12. G. H. Hardy and J. E. Littlewood, Some new properties of Fourier constants, J. London Math. Soc. 6 (1931), 3-9.
  13. N. R. Ladhawala, Absolute summability of Walsh-Fourier series, Pacific J. Math. 65 (1976), 103-108.
  14. R. H. Latter, A characterization of Hp(Rn) in terms of atoms, Studia Math. 62 (1978), 92-101.
  15. J. Neveu, Discrete-Parameter Martingales, North-Holland, 1971.
  16. F. Schipp, W. R. Wade, P. Simon and J. Pál, Walsh Series: An Introduction to Dyadic Harmonic Analysis, Adam Hilger, Bristol, 1990.
  17. P. Simon, Strong convergence of certain means with respect to the Walsh-Fourier series, Acta Math. Hungar. 49 (1987), 425-431.
  18. W. T. Sledd and D. A. Stegenga, An H1 multiplier theorem, Ark. Mat. 19 (1981), 265-270.
  19. B. Smith, A strong convergence theorem for H1(), in: Lecture Notes in Math. 995, Springer, Berlin, 1994, 169-173.
  20. E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Univ. Press, Princeton, N.J., 1970.
  21. E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, N.J., 1971.
  22. A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press, New York, 1986.
  23. F. Weisz, Cesàro summability of two-dimensional Walsh-Fourier series, Trans. Amer. Math. Soc., to appear.
  24. F. Weisz, Inequalities relative to two-parameter Vilenkin-Fourier coefficients, Studia Math. 99 (1991), 221-233.
  25. F. Weisz, Martingale Hardy Spaces and their Applications in Fourier-Analysis, Lecture Notes in Math. 1568, Springer, Berlin, 1994.
  26. F. Weisz, Martingale Hardy spaces for 0 < p ≤ 1, Probab. Theory Related Fields 84 (1990), 361-376.
  27. F. Weisz, Strong summability of two-dimensional Walsh-Fourier series, Acta Sci. Math. (Szeged) 60 (1995), 779-803.
  28. J. M. Wilson, A simple proof of the atomic decomposition for Hp(Rn), 0 < p ≤ 1, Studia Math. 74 (1982), 25-33.
  29. J. M. Wilson, On the atomic decomposition for Hardy spaces, Pacific J. Math. 116 (1985), 201-207.
  30. A. Zygmund, Trigonometric Series, Cambridge Univ. Press, London, 1959.
Pages:
173-194
Main language of publication
English
Received
1995-05-05
Published
1996
Exact and natural sciences