EN
The martingale Hardy space $H_p([0,1)^2)$ and the classical Hardy space $H_p(𝕋^2)$ are introduced. We prove that certain means of the partial sums of the two-parameter Walsh-Fourier and trigonometric-Fourier series are uniformly bounded operators from $H_p$ to $L_p$ (0 < p ≤ 1). As a consequence we obtain strong convergence theorems for the partial sums. The classical Hardy-Littlewood inequality is extended to two-parameter Walsh-Fourier and trigonometric-Fourier coefficients. The dual inequalities are also verified and a Marcinkiewicz-Zygmund type inequality is obtained for BMO spaces.