ArticleOriginal scientific text

Title

Jordan polynomials can be analytically recognized

Authors 1, 1, 1, 2

Affiliations

  1. Departamento de Análisis Matemático, Facultad de Ciencias, Universidad de Granada, 18071 Granada, Spain
  2. Department of Mathematics, University of Chicago, 5734 University Avenue, Chicago, Illinois 60637, U.S.A.

Abstract

We prove that there exists a real or complex central simple associative algebra M with minimal one-sided ideals such that, for every non-Jordan associative polynomial p, a Jordan-algebra norm can be given on M in such a way that the action of p on M becomes discontinuous.

Bibliography

  1. R. Arens and M. Goldberg, Quadrative seminorms and Jordan structures on algebras, Linear Algebra Appl. 181 (1993), 269-278.
  2. R. Arens, M. Goldberg and W. A. J. Luxemburg, Multiplicativity factors for seminorms II, J. Math. Anal. Appl. 170 (1992), 401-413.
  3. M. Cabrera, A. Moreno and A. Rodríguez, Zel'manov's theorem for primitive Jordan-Banach algebras, J. London Math. Soc., to appear.
  4. M. Cabrera, A. Moreno and A. Rodríguez, On the behaviour of Jordan-algebra norms on associative algebras, Studia Math. 113 (1995), 81-100.
  5. M. Cabrera and A. Rodríguez, Zel'manov's theorem for normed simple Jordan algebras with a unit, Bull. London Math. Soc. 25 (1993), 59-63.
  6. M. Cabrera and A. Rodríguez, Non-degenerately ultraprime Jordan-Banach algebras: a zel'manovian treatment, Proc. London Math. Soc. 69 (1994), 576-604.
  7. A. Fernández, E. García and A. Rodríguez, A Zel'manov prime theorem for JB*-algebras, J. London Math. Soc. 46 (1992), 319-335.
  8. N. Jacobson, Lectures in Abstract Algebra. II. Linear Algebra, Grad. Texts in Math. 31, Springer, New York, 1953.
  9. N. Jacobson, Structure and Representations of Jordan Algebras, Amer. Math. Soc. Colloq. Publ. 39, Providence, R.I., 1968.
  10. J. M. Osborn and M. L. Racine, Jordan rings with nonzero socle, Trans. Amer. Math. Soc. 251 (1979), 375-387.
  11. J. Pérez, L. Rico, A. Rodríguez and A. R. Villena, Prime Jordan-Banach algebras with nonzero socle, Comm. Algebra 20 (1992), 17-53.
  12. H.-G. Quebbemann, A representation theorem for algebras with involution, Linear Algebra Appl. 94 (1987), 193-195.
  13. C. E. Rickart, General Theory of Banach Algebras, Krieger, New York, 1974.
  14. A. Rodríguez, La continuidad del producto de Jordan implica la del ordinario en el caso completo semiprimo, in: Contribuciones en Probabilidad, Estadí stica Matemática, Enseñanza de la Matemática y Análisis, Secretariado de Publicaciones de la Universidad de Granada, Granada, 1979, 280-288.
  15. A. Rodríguez, Jordan axioms for C*-algebras, Manuscripta Math. 61 (1988), 297-314.
  16. A. Rodríguez, Jordan structures in analysis, in: Jordan Algebras, Proc. Conf. Oberwolfach, August 9-15, 1992, W. Kaup, K. McCrimmon and H. Petersson (eds.), de Gruyter, Berlin, 1994, 97-186.
  17. A. Rodríguez, A. Slin'ko and E. Zel'manov, Extending the norm from Jordan-Banach algebras of hermitian elements to their associative envelopes, Comm. Algebra 22 (1994), 1435-1455.
  18. E. Zel'manov, On prime Jordan algebras II, Siberian Math. J. 24 (1983), 89-104.
Pages:
137-147
Main language of publication
English
Received
1995-01-30
Accepted
1995-07-24
Published
1996
Exact and natural sciences