ArticleOriginal scientific text

Title

Open mapping theorem and inversion theorem for γ-paraconvex multivalued mappings and applications

Authors 1

Affiliations

  1. Université de Bourgogne, Laboratoire "Analyse Appliquée et Optimisation", B.P. 138, 21004 Dijon Cedex, France

Abstract

We extend the open mapping theorem and inversion theorem of Robinson for convex multivalued mappings to γ-paraconvex multivalued mappings. Some questions posed by Rolewicz are also investigated. Our results are applied to obtain a generalization of the Farkas lemma for γ-paraconvex multivalued mappings.

Bibliography

  1. J. M. Borwein and D. M. Zhuang, Verifiable necessary and sufficient conditions for regularity of set-valued and single-valued maps, J. Math. Anal. Appl. 134 (1988), 441-459.
  2. F. H. Clarke, A new approach to Lagrange multipliers, Math. Oper. Res. 1 (1976), 165-174.
  3. R. Cominetti, Metric regularity, tangent sets and second-order optimality conditions, Appl. Math. Optim. 21 (1990), 265-288.
  4. S. Dolecki, Open relation theorem without closedness assumption, Proc. Amer. Math. Soc. 109 (1990), 1019-1024.
  5. B. M. Glover, V. Jeyakumar and W. Oettli, A Farkas lamma for difference sublinear systems and quasi-differentiable programming, Math. Programming 63 (1994), 109-125.
  6. J. Gwinner, Results of Farkas type, Numer. Funct. Anal. Optim. 9 (1987), 471-520.
  7. V. Jeyakumar, A general Farkas lemma and characterization of optimality for a nonsmooth program involving convex processes, J. Optim. Theory Appl. 55 (1987), 449-461.
  8. A. Jourani, Intersection formulae and the marginal function in Banach spaces, J. Math. Anal. Appl. 192 (1995), 867-891.
  9. A. Jourani, Subdifferentiability and subdifferential monotonicity of γ-paraconvex functions, 1995, submitted.
  10. A. Jourani and L. Thibault, The use of metric graphical regularity in approximate subdifferential calculus rule in finite dimensions, Optimization 21 (1990), 509-519.
  11. J.-P. Penot, Metric regularity, openness and Lipschitzian behavior of multifunctions, Nonlinear Anal. 13 (1989), 629-643.
  12. S. M. Robinson, Regularity and stability for convex multivalued functions, Math. Oper. Res. 1 (1976), 130-143.
  13. R. T. Rockafellar, Extensions of subgradient calculus with applications to optimization, Nonlinear Anal. 9 (1985), 665-698.
  14. S. Rolewicz, On paraconvex multifunctions, Oper. Res. Verfahren 31 (1979), 539-546.
  15. S. Rolewicz, On γ-paraconvex multifunctions, Math. Japon. 24 (1979), 293-300.
  16. S. Rolewicz, On conditions warranting Φ2-subdifferentiability, Math. Programming Study 14 (1981), 215-224.
  17. K. Shimizu, E. Aiyoshi and R. Katayama, Generalized Farkas's theorem and optimization of infinitely constrained problems, J. Optim. Theory Appl. 40 (1983), 451-462.
  18. C. Swartz, A general Farkas lemma, ibid. 46 (1985), 237-244.
  19. C. Ursescu, Multifunctions with convex closed graph, Czechoslovak Math. J. 7 (1975), 438-441.
  20. D. E. Ward and J. M. Borwein, Nonsmooth calculus in finite dimensions, SIAM J. Control Optim. 25 (1987), 1312-1340.
  21. C. Zalinescu, On Gwinner's paper "Results of Farkas type", Numer. Funct. Anal. Optim. 10 (1989), 401-414.
Pages:
123-136
Main language of publication
English
Received
1995-01-30
Accepted
1995-07-24
Published
1996
Exact and natural sciences