ArticleOriginal scientific text

Title

On Kato non-singularity

Authors 1, 2

Affiliations

  1. School of Mathematics, Trinity College, Dublin, Ireland
  2. Instituto de Matemáticas, Universidad Nacional Autónoma de México, México 04510 DF, Mexico

Abstract

An exactness lemma offers a simplified account of the spectral properties of the "holomorphic" analogue of normal solvability.

Bibliography

  1. R. H. Bouldin, Closed range and relative regularity for products, J. Math. Anal. 61 (1977), 397-403.
  2. S. R. Caradus, Operator Theory of the Pseudoinverse, Queen's Papers in Pure and Appl. Math. 38, Queen's Univ., Kingston, Ont., 1974.
  3. I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
  4. J. K. Finch, The single-valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.
  5. K. H. Förster, Über die Invarianz einiger Räume, die zum Operator T-λA gehören, Arch. Math. (Basel) 17 (1966), 56-64.
  6. S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966.
  7. R. E. Harte, Invertibility and Singularity, Dekker, New York, 1988.
  8. R. E. Harte, Taylor exactness and Kato's jump, Proc. Amer. Math. Soc. 119 (1993), 793-801.
  9. T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322.
  10. K. B. Laursen and M. Mbekhta, Closed range multipliers and generalized inverses, Studia Math. 107 (1993), 127-135.
  11. K. B. Laursen and M. M. Neumann, Local spectral theory and spectral inclusions, Glasgow Math. J. 36 (1994), 331-343.
  12. W. Y. Lee, A generalization of the punctured neighborhood theorem, Proc. Amer. Math. Soc. 117 (1993), 107-109.
  13. M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectrales, Glasgow Math. J. 29 (1987), 159-175.
  14. M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105.
  15. M. Mbekhta, Sur la théorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631.
  16. M. Mbekhta, Local spectrum and generalized spectrum, ibid. 112 (1991), 457-463.
  17. M. Mbekhta et A. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Publ. Inst. Rech. Math. Av. Lille 22 (1990), XII.
  18. V. Müller, On the regular spectrum, J. Operator Theory 31 (1995), 366-380.
  19. V. Rakočević, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. 36 (1993), 197-209.
  20. P. Saphar, Contribution à l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384.
  21. C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489.
  22. C. Schmoeger, On isolated points of the spectrum of a bounded linear operator, Proc. Amer. Math. Soc. 117 (1993), 715-719.
  23. C. Schmoeger, On a generalized punctured neighborhood theorem in L(X), ibid. 123 (1995), 1237-1240.
  24. T. Starr and T. West, A positive contribution to operator theory, Bord na Mona Bull. 5 (1938), 6.
Pages:
107-114
Main language of publication
English
Received
1994-01-27
Accepted
1995-08-18
Published
1996
Exact and natural sciences