Download PDF - On Kato non-singularity
ArticleOriginal scientific text
Title
On Kato non-singularity
Authors 1, 2
Affiliations
- School of Mathematics, Trinity College, Dublin, Ireland
- Instituto de Matemáticas, Universidad Nacional Autónoma de México, México 04510 DF, Mexico
Abstract
An exactness lemma offers a simplified account of the spectral properties of the "holomorphic" analogue of normal solvability.
Bibliography
- R. H. Bouldin, Closed range and relative regularity for products, J. Math. Anal. 61 (1977), 397-403.
- S. R. Caradus, Operator Theory of the Pseudoinverse, Queen's Papers in Pure and Appl. Math. 38, Queen's Univ., Kingston, Ont., 1974.
- I. Colojoară and C. Foiaş, Theory of Generalized Spectral Operators, Gordon and Breach, New York, 1968.
- J. K. Finch, The single-valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.
- K. H. Förster, Über die Invarianz einiger Räume, die zum Operator
gehören, Arch. Math. (Basel) 17 (1966), 56-64. - S. Goldberg, Unbounded Linear Operators, McGraw-Hill, New York, 1966.
- R. E. Harte, Invertibility and Singularity, Dekker, New York, 1988.
- R. E. Harte, Taylor exactness and Kato's jump, Proc. Amer. Math. Soc. 119 (1993), 793-801.
- T. Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Anal. Math. 6 (1958), 261-322.
- K. B. Laursen and M. Mbekhta, Closed range multipliers and generalized inverses, Studia Math. 107 (1993), 127-135.
- K. B. Laursen and M. M. Neumann, Local spectral theory and spectral inclusions, Glasgow Math. J. 36 (1994), 331-343.
- W. Y. Lee, A generalization of the punctured neighborhood theorem, Proc. Amer. Math. Soc. 117 (1993), 107-109.
- M. Mbekhta, Généralisation de la décomposition de Kato aux opérateurs paranormaux et spectrales, Glasgow Math. J. 29 (1987), 159-175.
- M. Mbekhta, Résolvant généralisé et théorie spectrale, J. Operator Theory 21 (1989), 69-105.
- M. Mbekhta, Sur la théorie spectrale locale et limite des nilpotents, Proc. Amer. Math. Soc. 110 (1990), 621-631.
- M. Mbekhta, Local spectrum and generalized spectrum, ibid. 112 (1991), 457-463.
- M. Mbekhta et A. Ouahab, Opérateur s-régulier dans un espace de Banach et théorie spectrale, Publ. Inst. Rech. Math. Av. Lille 22 (1990), XII.
- V. Müller, On the regular spectrum, J. Operator Theory 31 (1995), 366-380.
- V. Rakočević, Generalized spectrum and commuting compact perturbations, Proc. Edinburgh Math. Soc. 36 (1993), 197-209.
- P. Saphar, Contribution à l'étude des applications linéaires dans un espace de Banach, Bull. Soc. Math. France 92 (1964), 363-384.
- C. Schmoeger, Ein Spektralabbildungssatz, Arch. Math. (Basel) 55 (1990), 484-489.
- C. Schmoeger, On isolated points of the spectrum of a bounded linear operator, Proc. Amer. Math. Soc. 117 (1993), 715-719.
- C. Schmoeger, On a generalized punctured neighborhood theorem in L(X), ibid. 123 (1995), 1237-1240.
- T. Starr and T. West, A positive contribution to operator theory, Bord na Mona Bull. 5 (1938), 6.