ArticleOriginal scientific text

Title

A convolution operation for a distributional Hankel transformation

Authors 1, 1

Affiliations

  1. Departamento de Análisis Matemático, Universidad de la Laguna, 38271 La Laguna, Islas Canarias, Spain

Abstract

We investigate the Hankel transformation and the Hankel convolution on new spaces of generalized functions.

Keywords

Hankel transformation, convolution, distributions, Bessel functions

Bibliography

  1. [BM1] J. J. Betancor and I. Marrero, Multipliers of Hankel transformable generalized functions, Comment. Math. Univ. Carolin. 33 (1992), 389-401.
  2. [BM2] J. J. Betancor and I. Marrero, The Hankel convolution and the Zemanian spaces βμ and βμ, Math. Nachr. 160 (1993), 277-298.
  3. [BM3] J. J. Betancor and I. Marrero, Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japon. 160 (1993), 1141-1155.
  4. [BM4] J. J. Betancor and I. Marrero, Some properties of Hankel convolution operators, Canad. Math. Bull. 36 (1993), 398-406.
  5. [DP] L. S. Dube and J. N. Pandey, On the Hankel transform of distributions, Tôhoku Math. J. 27 (1975), 337-354.
  6. [GN1] B. J. González and E. R. Negrin, Convolution over the spaces Sk, J. Math. Anal. Appl. 190 (1995), 829-843.
  7. [GN2] B. J. González and E. R. Negrin, Fourier transform over the spaces Sk, ibid. 194 (1995), 780-798.
  8. [H] D. T. Haimo, Integral equations associated with Hankel convolutions, Trans. Amer. Math. Soc. 116 (1965), 330-375.
  9. [Hi] I. I. Hirschman, Jr., Variation diminishing Hankel transforms, J. Anal. Math. 8 (1960/61), 307-336.
  10. [KL] E. L. Koh and C. K. Li, The complex Hankel transformation on Mμ, Congr. Numer. 87 (1992), 145-151.
  11. [KZ] E. L. Koh and A. H. Zemanian, The complex Hankel and I-transformations of generalized functions, SIAM J. Appl. Math. 16 (1968), 945-957.
  12. [S] A. M. Sánchez, La transformación integral generalizada de Hankel-Schwartz, Ph.D. Thesis, Dep. Análisis Matemático, Universidad de La Laguna, 1987.
  13. [W] G. N. Watson, A Treatise on the Theory of Bessel Functions, Cambridge University Press, London, 1958.
  14. [Z1] A. H. Zemanian, The distributional Hankel transformation, SIAM J. Appl. Math. 14 (1966), 561-576.
  15. [Z2] A. H. Zemanian, The Hankel transformation of certain distributions of rapid growth, ibid., 678-690.
  16. [Z3] A. H. Zemanian, Generalized Integral Transformations, Interscience, New York, 1968.
Pages:
57-72
Main language of publication
English
Received
1995-01-27
Accepted
1995-05-09
Published
1995
Exact and natural sciences