ArticleOriginal scientific text

Title

Vector-valued Choquet-Deny theorem, renewal equation and self-similar measures

Authors 1, 2, 3

Affiliations

  1. Department Of Mathematics, University Of Pittsburgh, Pittsburgh, Pennsylvania 15260, U.S.A.
  2. Houston Advanced Research Center, 4800 Research Forest Drive, The Woodlands, Texas 77381, U.S.A.
  3. Goldsmiths' College, University Of London, London Se14, England

Abstract

The Choquet-Deny theorem and Deny's theorem are extended to the vector-valued case. They are applied to give a simple nonprobabilistic proof of the vector-valued renewal theorem, which is used to study the Lp-dimension, the Lp-density and the Fourier transformation of vector-valued self-similar measures. The results answer some questions raised by Strichartz.

Keywords

Choquet-Deny theorem, convolution, exponential function, matrices, renewal equation, self-similar measures

Bibliography

  1. [B] M. Barnsley, Fractals Everywhere, Academic Press, 1988.
  2. [BW] Y. Benyamini and Y. Weit, Harmonic analysis of spherical functions on SU(1,1), Ann. Inst. Fourier (Grenoble) 42 (3) (1992), 671-694.
  3. [CM] R. Cawley and R. Mauldin, Multifractal decompositions of Moran fractals, Adv. in Math. 92 (1992), 196-236.
  4. [CD] G. Choquet et J. Deny, Sur l'équation de convolution μ = μ ⁎ σ, C. R. Acad. Sci. Paris 250 (1960), 799-801.
  5. [CL] C. H. Chu and K. S. Lau, Operator-valued solutions of the integrated Cauchy functional equation, J. Operator Theory 32 (1994), 157-183.
  6. [Ch] K. Chung, A Course in Probability Theory, 2nd ed., Academic Press, 1974.
  7. [Ç] E. Çinlar, Introduction to Stochastic Processes, Prentice-Hall, 1975.
  8. [DS] L. Davies and D. N. Shanbhag, A generalization of a theorem of Deny with application in characterization problems, Quart. J. Math. Oxford 38 (1987), 13-34.
  9. [D] J. Deny, Sur l'équation de convolution μ ⁎ σ = μ, Sém. Théor. Potent. M. Brelot, Fac. Sci. Paris 4 (1960).
  10. [EM] G. Edgar and R. Mauldin, Multifractal decompositions of digraph recursive fractals, Proc. London Math. Soc. 65 (1992), 196-236.
  11. [F] K. Falconer, Fractal Geometry: Mathematical Foundations and Applications, Wiley, New York, 1990.
  12. [Fe] W. Feller, An Introduction to Probability Theory and its Applications, 3nd ed., Vol. 2, Wiley, New York, 1968.
  13. [Fu] H. Fürstenberg, Poisson formula for semi-simple Lie groups, Ann. of Math. 77 (1963), 335-386.
  14. [H] J. Hutchinson, Fractals and self similarity, Indiana Univ. Math. J. 30 (1981), 713-747.
  15. [K] J.-P. Kahane, Lectures on Mean Periodic Functions, Tata Inst., Bombay, 1959.
  16. [La] S. Lalley, The packing and covering function of some self-similar fractals, Indiana Univ. Math. J. 37 (1988), 699-709.
  17. [L1] K. S. Lau, Fractal measures and mean p-variations, J. Funct. Anal. 108 (1992), 421-457.
  18. [L2] K. S. Lau, Self-similarity, Lp-spectrum and multifractal formalism, preprint.
  19. [LR] K. S. Lau and C. R. Rao, Integrated Cauchy functional equation and characterizations of the exponential law, Sankhyā A 44 (1982), 72-90.
  20. [LW] K. S. Lau and J. R. Wang, Mean quadratic variations and Fourier asymptotics of self-similar measures, Monatsh. Math. 115 (1993), 99-132.
  21. [LZ] K. S. Lau and W. B. Zeng, The convolution equation of Choquet and Deny on semigroups, Studia Math. 97 (1990), 115-135.
  22. [Ma] B. Mandelbrot, The Fractal Geometry of Nature, Freeman, 1983.
  23. [MW] R. Mauldin and S. Williams, Hausdorff dimension in graph directed constructions, Trans. Amer. Math. Soc. 309 (1988), 811-829.
  24. [M] H. Minc, Nonnegative Matrices, Wiley, 1988.
  25. [RL] B. Ramachandran and K. S. Lau, Functional Equations in Probability Theory, Academic Press, 1991.
  26. [RS] C. R. Rao and D. N. Shanbhag, Recent results on characterizations of probability distributions: A unified approach through an extension of Deny's theorem, Adv. Appl. Probab. 18 (1986), 660-678.
  27. [Sc] A. Schief, Separation properties for self-similar sets, Proc. Amer. Math. Soc. 122 (1994), 111-115.
  28. [Sch] L. Schwartz, Théorie générale des fonctions moyennes-périodiques, Ann. of Math. 48 (1947), 857-929.
  29. [S] E. Seneta, Nonnegative Matrices, Wiley, New York, 1973.
  30. [Str1] R. Strichartz, Self-similar measures and their Fourier transformations I, Indiana Univ. Math. J. 39 (1990), 797-817.
  31. [Str2] R. Strichartz, Self-similar measures and their Fourier transformations II, Trans. Amer. Math. Soc. 336 (1993), 335-361.
  32. [Str3] R. Strichartz, Self-similar measures and their Fourier transformations III, Indiana Univ. Math. J. 42 (1993), 367-411.
  33. [W] J. L. Wang, Topics in fractal geometry, Ph.D. Thesis, North Texas University, 1994.
Pages:
1-28
Main language of publication
English
Received
1994-01-25
Accepted
1995-05-31
Published
1995
Exact and natural sciences