ArticleOriginal scientific text

Title

Sur la caractérisation topologique des compacts à l'aide des demi-treillis des pseudométriques continues

Authors 1

Affiliations

  1. Faculté de Mathématiques, Université de Lviv, Universytetska 1, Lviv, 290602, Ukraine

Abstract

For a Tikhonov space X we denote by Pc(X) the semilattice of all continuous pseudometrics on X. It is proved that compact Hausdorff spaces X and Y are homeomorphic if and only if there is a positive-homogeneous (or an additive) semi-lattice isomorphism T:Pc(X) → Pc(Y). A topology on Pc(X) is called admissible if it is intermediate between the compact-open and pointwise topologies on Pc(X). Another result states that Tikhonov spaces X and Y are homeomorphic if and only if there exists a positive-homogeneous (or an additive) semi-lattice homeomorphism T:(Pc(X),τX)(Pc(Y),τY), where τX,τY are admissible topologies on Pc(X) and Pc(Y).

Bibliography

  1. [Ba] S. Banach, Théorie des opérations linéaires, Warszawa, 1932.
  2. [En] R. Engelking, General Topology, PWN, Warszawa, 1977.
  3. [GK] I. M. Gelfand and A. N. Kolmogoroff [A. N. Kolmogorov], On rings of continuous functions on topological spaces, Dokl. Akad. Nauk SSSR 22 (1939), 11-15.
  4. [Ka] I. Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc. 53 (1947), 617-623.
  5. [Se] Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.
  6. [Sh] T. Shirota, A generalization of a theorem of I. Kaplansky, Osaka Math. J. 4 (1952), 121-132.
Pages:
303-310
Main language of publication
French
Received
1995-05-17
Published
1995
Exact and natural sciences