ArticleOriginal scientific text
Title
Sur la caractérisation topologique des compacts à l'aide des demi-treillis des pseudométriques continues
Authors 1
Affiliations
- Faculté de Mathématiques, Université de Lviv, Universytetska 1, Lviv, 290602, Ukraine
Abstract
For a Tikhonov space X we denote by Pc(X) the semilattice of all continuous pseudometrics on X. It is proved that compact Hausdorff spaces X and Y are homeomorphic if and only if there is a positive-homogeneous (or an additive) semi-lattice isomorphism T:Pc(X) → Pc(Y).
A topology on Pc(X) is called admissible if it is intermediate between the compact-open and pointwise topologies on Pc(X). Another result states that Tikhonov spaces X and Y are homeomorphic if and only if there exists a positive-homogeneous (or an additive) semi-lattice homeomorphism , where are admissible topologies on Pc(X) and Pc(Y).
Bibliography
- [Ba] S. Banach, Théorie des opérations linéaires, Warszawa, 1932.
- [En] R. Engelking, General Topology, PWN, Warszawa, 1977.
- [GK] I. M. Gelfand and A. N. Kolmogoroff [A. N. Kolmogorov], On rings of continuous functions on topological spaces, Dokl. Akad. Nauk SSSR 22 (1939), 11-15.
- [Ka] I. Kaplansky, Lattices of continuous functions, Bull. Amer. Math. Soc. 53 (1947), 617-623.
- [Se] Z. Semadeni, Banach Spaces of Continuous Functions, PWN, Warszawa, 1971.
- [Sh] T. Shirota, A generalization of a theorem of I. Kaplansky, Osaka Math. J. 4 (1952), 121-132.