ArticleOriginal scientific text

Title

An index formula for chains

Authors 1, 2

Affiliations

  1. School of Mathematics, Trinity College, Dublin 2, Ireland
  2. Department of Mathematics, Sung Kyun Kwan University, Suwon, 440-746, Korea

Abstract

We derive a formula for the index of Fredholm chains on normed spaces.

Bibliography

  1. E. Albrecht and F.-H. Vasilescu, Semi-Fredholm Complexes, Oper. Theory Adv. Appl. 11, Birkhäuser, 1983.
  2. E. Albrecht and F.-H. Vasilescu, Stability of the index of a complex of Banach spaces, J. Funct. Anal. 66 (1986), 141-172.
  3. C.-G. Ambrozie, Stability of the index of a Fredholm symmetrical pair, J. Operator Theory 25 (1991), 61-77.
  4. S. R. Cardus, W. E. Pfaffenberger and B. Yood, Calkin Algebras and Algebras of Operators on Banach Spaces, Dekker, New York, 1974.
  5. B. Booss and D. D. Bleecker, Topology and Analysis: The Atiyah-Singer Index Formula and Guage-Theoretic Physics, Springer, 1985.
  6. R. E. Curto, Fredholm and invertible tuples of operators. The deformation problem, Trans. Amer. Math. Soc. 266 (1981), 129-159.
  7. R. E. Harte, Invertibility, singularity and Joseph L. Taylor, Proc. Roy. Irish Acad. Sect. A 81 (1981), 399-406.
  8. R. E. Harte, Fredholm, Weyl and Browder theory, ibid. 85 (1985), 151-176.
  9. R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.
  10. R. E. Harte, Index continuity for chains, in: Aportaciones Matematicas en Memoria del Profesor Victor Manuel Onieva Aleixandre, Univ. de Cantabria, Santander, 1991, 199-208; MR 92f:47011.
  11. R. E. Harte, Taylor exactness and Kato's jump, Proc. Amer. Math. Soc. 119 (1993), 793-802.
  12. M. Putinar, Some invariants for semi-Fredholm systems of essentially commuting operators, J. Operator Theory 8 (1982), 65-90.
  13. J. L. Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191.
  14. F.-H. Vasilescu, A characterization of the joint spectrum in Hilbert space, Rev. Roumaine Math. Pures Appl. 22 (1977), 1001-1009.
  15. F.-H. Vasilescu, On pairs of commuting operators, Studia Math. 62 (1978), 203-207.
  16. F.-H. Vasilescu, Stability of the index of a complex of Banach spaces, J. Operator Theory 2 (1979), 247-275.
Pages:
283-294
Main language of publication
English
Received
1995-02-03
Published
1995
Exact and natural sciences