ArticleOriginal scientific text

Title

Weak Cauchy sequences in L(μ,X)

Authors 1

Affiliations

  1. Mathematisches Institut der Ludwig-Maximilians-Universität, Theresienstrasse 39, 80333 München, Germany

Abstract

For a finite and positive measure space Ω,∑,μ characterizations of weak Cauchy sequences in L(μ,X), the space of μ-essentially bounded vector-valued functions f:Ω → X, are presented. The fine distinction between Asplund and conditionally weakly compact subsets of L(μ,X) is discussed.

Bibliography

  1. [AU] K. T. Andrews and J. J. Uhl, On weak compactness in L(μ,X), Indiana Univ. Math. J. 30 (1981), 907-915.
  2. [BH] J. Batt and W. Hiermeyer, On compactness in Lp(μ,X) in the weak topology and in the topology σ(Lp(μ,X),Lq(μ,X)), Math. Z. 182 (1983), 409-432.
  3. [Bo] R. Bourgin, Geometric Aspects of Convex Sets with the Radon-Nikodým Property, Lecture Notes in Math. 993, Springer, 1983.
  4. [Di] J. Diestel, Sequences and Series in Banach Spaces, Springer, Berlin, 1984.
  5. [Din] N. Dinculeanu, Vector Measures, Deutscher Verlag Wiss., Berlin, 1966.
  6. [DRS] J. Diestel, W. Ruess and W. Schachermayer, On weak compactness in L1(μ,X), Proc. Amer. Math. Soc. 118 (1993), 447-453.
  7. [DU] J. Diestel and J. Uhl, Vector Measures, Math. Surveys 15, Amer. Math. Soc., 1977.
  8. [Ku] C. Kuratowski, Topologie I, Monograf. Mat., Warszawa, 1933.
  9. [La] H. E. Lacey, The Isometric Theory of Classical Banach Spaces, Springer, Berlin, 1974.
  10. [RSU] L. H. Riddle, E. Saab and J. J. Uhl, Sets with the weak Radon-Nikodým property in dual Banach spaces, Indiana Univ. Math. J. 32 (1983), 527-541.
  11. [RU] L. H. Riddle and J. J. Uhl, Martingales and the fine line between Asplund spaces and spaces not containing a copy of 1, in: Martingale Theory in Harmonic Analysis and Banach Spaces, Lecture Notes in Math. 939, Springer, 1983, 145-156.
  12. [S1] G. Schlüchtermann, Renorming in the space of Bochner integrable functions L1(μ,X), Manuscripta Math. 73 (1991), 397-409.
  13. [S2] G. Schlüchtermann, On weakly compact operators, Math. Ann. 292 (1992), 263-266.
  14. [S3] G. Schlüchtermann, Weak compactness in L(μ,X), J. Funct. Anal. 125, (1994), 379-388.
  15. [Ta] M. Talagrand, Weak Cauchy sequences in L1(E), Amer. J. Math. 106 (1984), 703-724.
Pages:
271-281
Main language of publication
English
Received
1994-12-20
Accepted
1995-06-29
Published
1995
Exact and natural sciences