Pełnotekstowe zasoby PLDML oraz innych baz dziedzinowych są już dostępne w nowej Bibliotece Nauki.
Zapraszamy na https://bibliotekanauki.pl

PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Czasopismo

1995 | 116 | 3 | 225-238

Tytuł artykułu

Geometric characteristics for convergence and asymptotics of successive approximations of equations with smooth operators

Treść / Zawartość

Warianty tytułu

Języki publikacji

EN

Abstrakty

EN
We discuss the problem of characterizing the possible asymptotic behaviour of the iterates of a sufficiently smooth nonlinear operator acting in a Banach space in small neighbourhoods of a fixed point. It turns out that under natural conditions, for the most part of initial approximations these iterates tend to "lie down" along a finite-dimensional subspace generated by the leading (peripherical) eigensubspaces of the Fréchet derivative at the fixed point and moreover the asymptotic behaviour of "projections" of the iterates on this subspace is determined by the arithmetic properties of the leading eigenvalues.

Słowa kluczowe

Czasopismo

Rocznik

Tom

116

Numer

3

Strony

225-238

Opis fizyczny

Daty

wydano
1995
otrzymano
1994-10-13
poprawiono
1995-05-09

Twórcy

  • Brest Engineering and Construction Institute, Moskovskaya, 267, 224017 Brest, Belorussia
  • Faculty of Mechanics and Mathematics, Belorussian State University, PR. F. Skoriny, 4, 220050 Minsk, Belorussia

Bibliografia

  • [1] J. Daneš, On the local spectral radius, Časopis Pěst. Mat. 112 (1987), 177-187.
  • [2] N. Dunford and J. Schwartz, Linear Operators I, Interscience Publ., Leyden, 1963.
  • [3] F. R. Gantmacher, The Theory of Matrices, Chelsea, New York, 1959.
  • [4] B. A. Godunov, The behavior of successive approximations for nonlinear operators, Dokl. Akad. Nauk Ukrain. SSR 4 (1971), 294-297 (in Russian).
  • [5] B. A. Godunov, Convergence acceleration in the method of successive approximations, in: Operator Methods for Differential Equations, Voronezh, 1979, 18-25 (in Russian).
  • [6] P. Hartman, Ordinary Differential Equations, Wiley, New York, 1964.
  • [7] N. M. Isakov, On the behavior of continuous operators near a fixed point in the critical case, in: Qualitative and Approximate Methods for Investigation of Operator Equations, Yaroslavl', 1978, 74-89 (in Russian).
  • [8] L. V. Kantorovich and G. P. Akilov, Functional Analysis, Nauka, Moscow, 1977 (in Russian); English transl.: Pergamon Press, Oxford, 1982.
  • [9] M. A. Krasnosel'skiĭ, G. M. Vaĭnikko, P. P. Zabreĭko, Ya. B. Rutitskiĭ and V. Ya. Stetsenko, Approximate Solution of Operator Equations, Nauka, Moscow, 1969 (in Russian); English transl.: Noordhoff, Groningen, 1972.
  • [10] M. A. Krasnosel'skiĭ, E. A. Lifshits and A. V. Sobolev, Positive Linear Systems, Nauka, Moscow, 1985 (in Russian); English transl.: Heldermann, Berlin, 1989.
  • [11] P. P. Zabreĭko and N. M. Isakov, Reduction principle in the method of successive approximations and invariant manifolds, Sibirsk. Mat. Zh. 20 (1979), 539-547 (in Russian).

Typ dokumentu

Bibliografia

Identyfikatory

Identyfikator YADDA

bwmeta1.element.bwnjournal-article-smv116i3p225bwm
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.