ArticleOriginal scientific text

Title

A fixed point theorem for demicontinuous pseudo-contractions in Hilbert apace

Authors 1, 1

Affiliations

  1. Mathematics Department, Marshall University, Huntington, West Virginia 25755-2560, U.S.A.

Abstract

Let C be a closed, bounded, convex subset of a Hilbert space. Let T : C → C be a demicontinuous pseudocontraction. Then T has a fixed point. This is shown by a combination of topological and combinatorial methods.

Bibliography

  1. F. E. Browder, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1100-1103.
  2. F. E. Browder, Nonlinear mappings of nonexpansive accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882.
  3. K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374.
  4. W. A. Kirk, Remarks on pseudo-contractive mappings, Proc. Amer. Math. Soc. 25 (1970), 821-823.
  5. R. H. Martin Jr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399-414.
  6. J. J. Moloney, Some fixed point theorems, Glasnik Mat. 24 (1989), 59-76.
  7. F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1930), 264-286.
  8. X. Weng, Fixed point iteration for local strictly pseudocontractive mappings, Proc. Amer. Math. Soc. 113 (1991), 727-731.
Pages:
217-223
Main language of publication
English
Received
1994-09-27
Accepted
1995-01-12
Published
1995
Exact and natural sciences