ArticleOriginal scientific text
Title
A fixed point theorem for demicontinuous pseudo-contractions in Hilbert apace
Authors 1, 1
Affiliations
- Mathematics Department, Marshall University, Huntington, West Virginia 25755-2560, U.S.A.
Abstract
Let C be a closed, bounded, convex subset of a Hilbert space. Let T : C → C be a demicontinuous pseudocontraction. Then T has a fixed point. This is shown by a combination of topological and combinatorial methods.
Bibliography
- F. E. Browder, Existence of periodic solutions for nonlinear equations of evolution, Proc. Nat. Acad. Sci. U.S.A. 53 (1965), 1100-1103.
- F. E. Browder, Nonlinear mappings of nonexpansive accretive type in Banach spaces, Bull. Amer. Math. Soc. 73 (1967), 875-882.
- K. Deimling, Zeros of accretive operators, Manuscripta Math. 13 (1974), 365-374.
- W. A. Kirk, Remarks on pseudo-contractive mappings, Proc. Amer. Math. Soc. 25 (1970), 821-823.
- R. H. Martin Jr., Differential equations on closed subsets of a Banach space, Trans. Amer. Math. Soc. 179 (1973), 399-414.
- J. J. Moloney, Some fixed point theorems, Glasnik Mat. 24 (1989), 59-76.
- F. P. Ramsey, On a problem of formal logic, Proc. London Math. Soc. (2) 30 (1930), 264-286.
- X. Weng, Fixed point iteration for local strictly pseudocontractive mappings, Proc. Amer. Math. Soc. 113 (1991), 727-731.