ArticleOriginal scientific text

Title

On the multiplicity function of ergodic group extensions, II

Authors 1, 1

Affiliations

  1. Department of Mathematics and Informatics, Nicholas Copernicus University, Chopina 12/18, 87-100 Toruń, Poland

Abstract

For an arbitrary set A+ containing 1, an ergodic automorphism T whose set of essential values of the multiplicity function is equal to A is constructed. If A is additionally finite, T can be chosen to be an analytic diffeomorphism on a finite-dimensional torus.

Bibliography

  1. L. M. Abramov, Metric automorphisms with quasi-discrete spectrum, Izv. Akad. Nauk SSSR 26 (1962), 513-550 (in Russian).
  2. O. N. Ageev, Dynamical systems with a Lebesgue component of even multiplicity in the spectrum, Mat. Sb. 136 (178) (1988), 307-319 (in Russian).
  3. F. Blanchard and M. Lemańczyk, Measure preserving diffeomorphisms with an arbitrary spectral multiplicity, Topol. Methods Nonlinear Anal. 1 (1993), 275-294.
  4. I. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic Theory, Springer, 1981.
  5. S. Ferenczi and J. Kwiatkowski, Rank and spectral multiplicity, Studia Math. 102 (1992), 121-144.
  6. S. Ferenczi, J. Kwiatkowski and C. Mauduit, Density theorem for (multiplicity, rank) pairs, J. Anal. Math., to appear.
  7. G. R. Goodson, On the spectral multiplicity of a class of finite rank transformations, Proc. Amer. Math. Soc. 93 (1985), 303-306.
  8. G. R. Goodson, J. Kwiatkowski, M. Lemańczyk and P. Liardet, On the multiplicity function of ergodic group extensions of rotations, Studia Math. 102 (1992), 157-174.
  9. G. R. Goodson and M. Lemańczyk, On the rank of a class of bijective substitutions, ibid. 96 (1990), 219-230.
  10. A. del Junco and D. Rudolph, Simple rigid rank-1, Ergodic Theory Dynam. Systems 7 (1987), 229-247.
  11. A. B. Katok, Constructions in ergodic theory, preprint.
  12. A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Uspekhi Mat. Nauk 22 (5) (1967), 81-106 (in Russian); English transl.: Russian Math. Surveys 15 (1967), 1-22.
  13. J. King, Joining-rank and the structure of finite rank mixing transformations, J. Anal. Math. 51 (1988), 182-227.
  14. J. Kwiatkowski and A. Sikorski, Spectral properties of G-symbolic Morse shifts, Bull. Soc. Math. France 115 (1987), 19-33.
  15. M. Lemańczyk, Toeplitz Z2-extensions, Ann. Inst. H. Poincaré Probab. Statist. 24 (1988), 1-43.
  16. J. Mathew and M. G. Nadkarni, A measure preserving transformation whose spectrum has Lebesgue component of multiplicity two, Bull. London Math. Soc. 16 (1984), 402-406.
  17. M. K. Mentzen, Some examples of automorphisms with rank r and simple spectrum, Bull. Polish Acad. Sci. 35 (1987), 417-424.
  18. V. I. Oseledec, The spectrum of ergodic automorphisms, Dokl. Akad. Nauk SSSR 168 (1966), 776-779 (in Russian).
  19. W. Parry, Topics in Ergodic Theory, Cambridge Univ. Press, 1981.
  20. M. Queffélec, Substitution Dynamical Systems - Spectral Analysis, Lecture Notes in Math. 1294, Springer 1987.
  21. E. A. Robinson, Ergodic measure preserving transformations with arbitrary finite spectral multiplicities, Invent. Math. 72 (1983), 299-314.
  22. E. A. Robinson, Transformations with highly nonhomogeneous spectrum of finite multiplicity, Israel J. Math. 56 (1986), 75-88.
  23. E. A. Robinson, Spectral multiplicity for non-abelian Morse sequences, in: Lecture Notes in Math. 1342, Springer, 1988, 645-652.
Pages:
207-215
Main language of publication
English
Received
1994-04-25
Accepted
1995-03-31
Published
1995
Exact and natural sciences