ArticleOriginal scientific textThe local versions of
Title
The local versions of spaces at the origin
Authors 1, 1
Affiliations
- Department of Mathematics, Beijing Normal University, Beijing 100875, The People's Republic of China
Abstract
Let 0 < p ≤ 1 < q < ∞ and α = n(1/p - 1/q). We introduce some new Hardy spaces which are the local versions of spaces at the origin. Characterizations of these spaces in terms of atomic and molecular decompositions are established, together with their φ-transform characterizations in M. Frazier and B. Jawerth's sense. We also prove an interpolation theorem for operators on and discuss the -boundedness of Calderón-Zygmund operators. Similar results can also be obtained for the non-homogeneous Hardy spaces .
Bibliography
- A. Baernstein II and E. T. Sawyer, Embedding and multiplier theorems for
, Mem. Amer. Math. Soc. 318 (1985). - Y. Z. Chen and K. S. Lau, On some new classes of Hardy spaces, J. Funct. Anal. 84 (1989), 255-278.
- C. Fefferman and E. M. Stein,
spaces of several variables, Acta Math. 129 (1972), 137-193. - M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799.
- M. Frazier and B. Jawerth, The φ-transform and applications to distribution spaces, in: Lecture Notes in Math. 1302, Springer, 1988, 223-246.
- M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170.
- J. García-Cuerva, Hardy spaces and Beurling algebras, J. London Math. Soc. (2) 39 (1989), 499-513.
- S. Z. Lu and F. Soria, On the Herz spaces with power weights, in: Fourier Analysis and Partial Differential Equations, J. Garcí a-Cuerva, E. Hernández, F. Soria and J. L. Torrea (eds.), Stud. Adv. Math., CRC Press, Boca Raton, 1995, 227-236.
- S. Z. Lu and D. C. Yang, The Littlewood-Paley function and φ-transform characterizations of a new Hardy space
associated with the Herz space, Studia Math. 101 (1992), 285-298. - S. Z. Lu and D. C. Yang, Some new Hardy spaces associated with the Herz spaces and their wavelet characterizations, J. Beijing Normal Univ. (Natural Sci.) 29 (1993), 10-19.
- M. H. Taibleson and G. Weiss, The molecular characterization of certain Hardy spaces, Astérisque 77 (1980), 67-149.
- M. H. Taibleson and G. Weiss, Certain function spaces associated with a.e. convergence of Fourier series, in: Conference in Honor of A. Zygmund, Vol. I, Wadsworth, 1983, 95-113.