Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
1995 | 116 | 1 | 23-41
Tytuł artykułu

Characterizing spectra of closed operators through existence of slowly growing solutions of their Cauchy problems

Treść / Zawartość
Warianty tytułu
Języki publikacji
Let A be a closed linear operator in a Banach space E. In the study of the nth-order abstract Cauchy problem $u^{(n)}(t) = Au(t)$, t ∈ ℝ, one is led to considering the linear Volterra equation (AVE) $u(t) = p(t) + A ʃ_{0}^{t} a(t-s)u(s)ds$, t ∈ ℝ, where $a(·) ∈ L_{loc}^{1}(ℝ)$ and p(·) is a vector-valued polynomial of the form $p(t) = ∑_{j=0}^n 1/(j!) x_j t^j$ for some elements $x_j ∈ E$. We describe the spectral properties of the operator A through the existence of slowly growing solutions of the (AVE). The main tool is the notion of Carleman spectrum of a vector-valued function. Moreover, an extension of a theorem of Pólya in complex analysis is obtained and applied to the individual "Ax = 0" and "Tx = x" problem.
  • [A-P] W. Arendt and J. Prüss, Vector-valued Tauberian theorems and asymptotic behavior of linear Volterra equations, SIAM J. Math. Anal. 23 (1992), 412-448.
  • [A] A. Atzmon, Operators which are annihilated by analytic functions and invariant subspaces, Acta Math. 114 (1980), 27-63.
  • [A1] A. Atzmon, On the existence of hyperinvariant subspaces, J. Operator Theory 11 (1984), 3-40.
  • [B-M] A. Beurling and P. Malliavin, On Fourier transforms of measures with compact support, Acta Math. 107 (1962), 291-309.
  • [C] T. Carleman, L'intégrale de Fourier et Questions qui s'y Rattachent, Almqvist and Wiksel, Uppsala, 1944.
  • [D] Y. Domar, On the analytic transform of bounded linear functionals on certain Banach algebras, Studia Math. 53 (1975), 203-224.
  • [E] J. Esterle, Quasimultipliers, representations of $H^∞$, and the closed ideal problem for commutative Banach algebras, in: Lecture Notes in Math. 975, Springer, 1983, 66-162.
  • [H-P] E. Hille and R. S. Phillips, Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. 31, Amer. Math. Soc., Providence, R.I., 1958.
  • [K] Y. Katznelson, An Introduction to Harmonic Analysis, Wiley, New York, 1968.
  • [L] N. Levinson, Gap and Density Theorems, Amer. Math. Soc. Colloq. Publ. 26, Amer. Math. Soc., New York, 1940.
  • [Ly] Yu. I. Lyubich, Introduction to the Theory of Banach Representations of Groups, Birkhäuser, 1988.
  • [N] R. Nagel (ed.), One-Parameter Semigroups of Positive Operators, Lecture Notes in Math. 1184, Springer, 1986.
  • [N-H] R. Nagel and S. Huang, Spectral mapping theorems for $C_0$-groups satisfying non-quasianalytic growth conditions, Math. Nachr. 169 (1994), 207-218.
  • [Pr] J. Prüss, Linear Evolutionary Integral Equations in Banach Spaces and Applications, Birkhäuser, Basel 1993.
  • [Sh] S. M. Shah, On the singularities of a class of functions on the unit circle, Bull. Amer. Math. Soc. 52 (1946), 1053-1056.
  • [V] A. Vretblad, Spectral analysis in weighted $L^1$ spaces on ℝ, Ark. Mat. 11 (1973), 109-138.
  • [Vu] Vũ Quôc Phóng, On the spectrum, complete trajectories and asymptotic stability of linear semi-dynamical systems, J. Differential Equations 115 (1993), 30-45.
  • [Z] M. Zarrabi, Spectral synthesis and applications to $C_0$-groups, preprint, 1992.
  • [Ze] J. Zemánek, On the Gelfand-Hille theorems, in: Functional Analysis and Operator Theory, J. Zemánek (ed.), Banach Center Publ. 30, Inst. Math., Polish Acad. Sci., Warszawa, 1994, 369-385.
Typ dokumentu
Identyfikator YADDA
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.